Войти
Территория кровельщика
  • Дебиторская задолженность – учет, погашение, списание
  • Беспроцентный займ: проводки
  • Мсфо в россии: применение, влияние на национальный учет
  • Обоснованность расходов: претензии инспекторов беспочвенны Как экономически обосновать расходы
  • Как оправдать экономически неэффективные расходы Экономическая обоснованность расходов по вине сотрудника
  • Коэффициент критической ликвидности (ККЛ)
  • Список иррациональных чисел. Иррациональное число

    Список иррациональных чисел. Иррациональное число

    Множество всех натуральных чисел обозначают буквой N. Натуральные числа, это числа которые мы используем для счета предметов: 1,2,3,4, … В некоторых источниках, к натуральным числам относят также число 0.

    Множество всех целых чисел обозначается буквой Z. Целые числа это все натуральные числа, нуль и отрицательные числа:

    1,-2,-3, -4, …

    Теперь присоединим к множеству всех целых чисел множество всех обыкновенных дробей: 2/3, 18/17, -4/5 и та далее. Тогда мы получим множество всех рациональных чисел.

    Множество рациональных чисел

    Множество всех рациональных чисел обозначается буквой Q. Множество всех рациональных чисел (Q) - это множество, состоящее из чисел вида m/n, -m/n и числа 0. В качестве n,m может выступать любое натуральное число. Следует отметить, что все рациональные числа, можно представить в виде конечной или бесконечной ПЕРЕОДИЧЕСКОЙ десятичной дроби. Верно и обратное, что любую конечную или бесконечную периодическую десятичную дробь можно записать в виде рационального числа.

    А как же быть например с числом 2.0100100010… ? Оно является бесконечно НЕПЕРЕОДИЧСЕКОЙ десятичной дробью. И оно не относится к рациональным числам.

    В школьном курсе алгебры изучаются только вещественные (или действительные) числа. Множество всех действительных чисел обозначается буквой R. Множество R состоит из всех рациональных и всех иррациональных чисел.

    Понятие иррациональных чисел

    Иррациональные числа - это все бесконечные десятичные непериодические дроби. Иррациональные числа не имеют специального обозначения.

    Например, все числа полученные извлечением квадратного корня из натуральных чисел, не являющихся квадратами натуральных чисел - будут иррациональными. (√2, √3, √5, √6, и т.д.).

    Но не стоит думать, что иррациональные числа получаются только извлечением квадратных корней. Например, число «пи» тоже является иррациональным, а оно получено делением. И как вы не старайтесь, вы не сможете получить его, извлекая квадратный корень из любого натурального числа.

    Множество иррациональных чисел обычно обозначается заглавной латинской буквой I {\displaystyle \mathbb {I} } в полужирном начертании без заливки. Таким образом: I = R ∖ Q {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } , то есть множество иррациональных чисел есть разность множеств вещественных и рациональных чисел.

    О существовании иррациональных чисел, точнее отрезков , несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

    Энциклопедичный YouTube

    • 1 / 5

      Иррациональными являются:

      Примеры доказательства иррациональности

      Корень из 2

      Допустим противное: 2 {\displaystyle {\sqrt {2}}} рационален , то есть представляется в виде дроби m n {\displaystyle {\frac {m}{n}}} , где m {\displaystyle m} - целое число , а n {\displaystyle n} - натуральное число .

      Возведём предполагаемое равенство в квадрат:

      2 = m n ⇒ 2 = m 2 n 2 ⇒ m 2 = 2 n 2 {\displaystyle {\sqrt {2}}={\frac {m}{n}}\Rightarrow 2={\frac {m^{2}}{n^{2}}}\Rightarrow m^{2}=2n^{2}} .

      История

      Античность

      Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены [ ] .

      Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу . Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок [ ] .

      Нет точных данных о том, иррациональность какого числа было доказано Гиппасом. Согласно легенде он нашёл его изучая длины сторон пентаграммы. Поэтому разумно предположить, что это было золотое сечение [ ] .

      Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

      Все рациональные числа можно представить в виде обыкновенной дроби. Это касается и целых чисел (например, 12, –6, 0), и конечных десятичных дробей (например, 0,5; –3,8921) , и бесконечных периодических десятичных дробей (например, 0,11(23); –3,(87)).

      Однако бесконечные непериодические десятичные дроби представить в виде обыкновенных дробей невозможно. Они то и являются иррациональными числами (то есть нерациональными). Примером такого числа является число π, которое приблизительно равно 3,14. Однако чему оно точно равно, определить нельзя, так как после цифры 4 идет бесконечный ряд других цифр, в которых нельзя выделить повторяющиеся периоды. При этом, хотя число π нельзя точно выразить, у него есть конкретный геометрический смысл. Число π - это отношение длины любой окружности к длине ее диаметра. Таким образом иррациональные числа действительно существуют в природе, также как рациональные.

      Другим примером иррациональных чисел могут служить квадратные корни из положительных чисел. Извлечение корней из одних чисел дает рациональные значения, из других - иррациональное. Например, √4 = 2, т. е. корень из 4 - это рациональное число. А вот √2, √5, √7 и многие другие дают в результате иррациональные числа, т. е. их можно извлечь лишь с приближением, округлив до определенного знака после запятой. При этом дробь получается непериодическая. То есть нельзя точно и определенно сказать, чему равен корень из этих чисел.

      Так √5 - это число лежащее между числами 2 и 3, так как √4 = 2, а √9 = 3. Можно также сделать вывод, что √5 ближе к 2, чем к 3, т. к. √4 ближе к √5, чем √9 к √5. Действительно, √5 ≈ 2,23 или √5 ≈ 2,24.

      Иррациональные числа получаются также в других вычислениях (а не только при извлечении корней), бывают отрицательными.

      По отношению к иррациональным числам можно сказать, что какой бы единичный отрезок мы не взяли для измерения длины, выраженной таким числом, мы не сможем ее определенно измерить.

      В арифметических операциях иррациональные числа могут участвовать наряду с рациональными. При этом есть ряд закономерностей. Например, если в арифметической операции участвуют только рациональные числа, то в результате получается всегда рациональное число. Если же в операции участвуют только иррациональные, то сказать однозначно, получится ли рациональное или иррациональное число, нельзя.

      Например, если умножить два иррациональных числа √2 * √2, то получится 2 - это рациональное число. С другой стороны, √2 * √3 = √6 - это иррациональное число.

      Если в арифметической операции участвует рациональное и иррациональное числа, то получится иррациональный результат. Например, 1 + 3,14... = 4,14... ; √17 – 4.

      Почему √17 – 4 - это иррациональное число? Представим, что получится рациональное число x. Тогда √17 = x + 4. Но x + 4 - это рациональное число, т. к. мы предположили, что x рациональное. Число 4 тоже рациональное, значит x + 4 рационально. Однако рациональное число не может быть равно иррациональному √17. Поэтому предположение, что √17 – 4 дает рациональный результат неверно. Результат арифметической операции будет иррациональным.

      Однако из этого правила есть исключение. Если мы умножаем иррациональное число на 0, то получится рациональное число 0.


      Материал этой статьи представляет собой начальную информацию про иррациональные числа . Сначала мы дадим определение иррациональных чисел и разъясним его. Дальше приведем примеры иррациональных чисел. Наконец, рассмотрим некоторые подходы к выяснению, является ли заданное число иррациональным или нет.

      Навигация по странице.

      Определение и примеры иррациональных чисел

      При изучении десятичных дробей мы отдельно рассмотрели бесконечные непериодические десятичные дроби. Такие дроби возникают при десятичном измерении длин отрезков, несоизмеримых с единичным отрезком. Также мы отметили, что бесконечные непериодические десятичные дроби не могут быть переведены в обыкновенные дроби (смотрите перевод обыкновенных дробей в десятичные и обратно), следовательно, эти числа не являются рациональными числами , они представляют так называемые иррациональные числа.

      Так мы подошли к определению иррациональных чисел .

      Определение.

      Числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби, называются иррациональными числами .

      Озвученное определение позволяет привести примеры иррациональных чисел . Например, бесконечная непериодическая десятичная дробь 4,10110011100011110000… (количество единиц и нулей каждый раз увеличивается на одну) является иррациональным числом. Приведем еще пример иррационального числа: −22,353335333335… (число троек, разделяющих восьмерки, каждый раз увеличивается на две).

      Следует отметить, что иррациональные числа достаточно редко встречаются именно в виде бесконечных непериодических десятичных дробей. Обычно они встречаются в виде , и т.п., а также в виде специально введенных букв. Самыми известными примерами иррациональных чисел в такой записи являются арифметический квадратный корень из двух , число «пи» π=3,141592… , число e=2,718281… и золотое число .

      Иррациональные числа также можно определить через действительные числа , которые объединяют рациональные и иррациональные числа.

      Определение.

      Иррациональные числа – это действительные числа, не являющиеся рациональными.

      Является ли данное число иррациональным?

      Когда число задано не в виде десятичной дроби, а в виде некоторого , корня, логарифма и т.п., то ответить на вопрос, является ли оно иррациональным, во многих случаях достаточно сложно.

      Несомненно, при ответе на поставленный вопрос очень полезно знать, какие числа не являются иррациональными. Из определения иррациональных чисел следует, что иррациональными числами не являются рациональные числа. Таким образом, иррациональными числами НЕ являются:

      • конечные и бесконечные периодические десятичные дроби.

      Также не является иррациональным числом любая композиция рациональных чисел, связанных знаками арифметических операций (+, −, ·, :). Это объясняется тем, что сумма, разность, произведение и частное двух рациональных чисел является рациональным числом. Например, значения выражений и являются рациональными числами. Здесь же заметим, что если в подобных выражениях среди рациональных чисел содержится одно единственное иррациональное число, то значение всего выражения будет иррациональным числом. Например, в выражении число - иррациональное, а остальные числа рациональные, следовательно - иррациональное число. Если бы было рациональным числом, то из этого следовала бы рациональность числа , а оно не является рациональным.

      Если же выражение, которым задано число, содержит несколько иррациональных чисел, знаки корня, логарифмы, тригонометрические функции, числа π , e и т.п., то требуется проводить доказательство иррациональности или рациональности заданного числа в каждом конкретном случае. Однако существует ряд уже полученных результатов, которыми можно пользоваться. Перечислим основные из них.

      Доказано, что корень степени k из целого числа является рациональным числом только тогда, когда число под корнем является k-ой степенью другого целого числа, в остальных случаях такой корень задает иррациональное число. Например, числа и - иррациональные, так как не существует целого числа, квадрат которого равен 7 , и не существует целого числа, возведение которого в пятую степень дает число 15 . А числа и не являются иррациональными, так как и .

      Что касается логарифмов, то доказать их иррациональность иногда удается методом от противного. Для примера докажем, что log 2 3 является иррациональным числом.

      Допустим, что log 2 3 рациональное число, а не иррациональное, то есть его можно представить в виде обыкновенной дроби m/n . и позволяют записать следующую цепочку равенств: . Последнее равенство невозможно, так как в его левой части нечетное число , а в правой части – четное. Так мы пришли к противоречию, значит, наше предположение оказалось неверным, и этим доказано, что log 2 3 - иррациональное число.

      Заметим, что lna при любом положительном и отличном от единицы рациональном a является иррациональным числом. Например, и - иррациональные числа.

      Также доказано, что число e a при любом отличном от нуля рациональном a является иррациональным, и что число π z при любом отличном от нуля целом z является иррациональным. К примеру, числа - иррациональные.

      Иррациональными числами также являются тригонометрические функции sin , cos , tg и ctg при любом рациональном и отличном от нуля значении аргумента. Например, sin1 , tg(−4) , cos5,7 , являются иррациональными числами.

      Существуют и другие доказанные результаты, на мы ограничимся уже перечисленными. Следует также сказать, что при доказательстве озвученных выше результатов применяется теория, связанная с алгебраическими числами и трансцендентными числами .

      В заключение отметим, что не стоит делать поспешных выводов относительно иррациональности заданных чисел. К примеру, кажется очевидным, что иррациональное число в иррациональной степени есть иррациональное число. Однако это не всегда так. В качестве подтверждения озвученного факта приведем степень . Известно, что - иррациональное число, а также доказано, что - иррациональное число, но - рациональное число. Также можно привести примеры иррациональных чисел, сумма, разность, произведение и частное которых есть рациональные числа. Более того, рациональность или иррациональность чисел π+e , π−e , π·e , π π , π e и многих других до сих пор не доказана.

      Список литературы.

      • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
      • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
      • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

      А свои корни они извлекли из латинского слова «ratio», что означает «разум». Исходя из дословного перевода:

      • Рациональное число — это «разумное число».
      • Иррациональное число, соответственно, «неразумное число».

      Общее понятие рационального числа

      Рациональным числом считается то число, которое можно записать в виде:

      1. Обыкновенной положительной дроби.
      2. Отрицательной обыкновенной дроби.
      3. В виде числа нуль (0).

      Иными словами, к рациональному число подойдет следующие определения:

      • Любое натуральное число является по своей сути рациональным, так как любое натуральное число можно представить в виде обыкновенной дроби.
      • Любое целое число, включительно число нуль, так как любое целое число можно записать как ввиде положительной обыкновенной дроби, в виде отрицательной обыкновенной дроби, так и ввиде числа нуль.
      • Любая обыкновенная дробь, и здесь не имеет значение положительная она или отрицательная, тоже напрямую подходит к определению рационального числа.
      • Так же в определение можно отнести и смешанное число, конечную десятичную дробь либо бесконечную периодическую дробь.

      Примеры рационального числа

      Рассмотрим примеры рациональных чисел:

      • Натуральные числа — «4», «202», «200».
      • Целые числа — «-36», «0», «42».
      • Обыкновенные дроби.

      Из вышеперечисленных примеров совершенно очевидно, что рациональные числа могут быть как положительными так и отрицательными . Естественно, число 0 (нуль), которое тоже в свою очередь является рациональным числом, в тоже время не относится к категории положительного или отрицательного числа.

      Отсюда, хотелось бы напомнить общеобразовательную программу с помощью следующего определения: «Рациональными числами» — называются те числа, которые можно записать в виде дроби х/у, где х (числитель) — целое число, а у (знаменатель) — натуральное число.

      Общее понятие и определение иррационального числа

      Помимо «рациональных чисел» нам известны и так называемые «иррациональные числа». Вкратце попробуем дать определение данным числам.

      Еще древние математики, желая вычислить диагональ квадрата по его сторонам, узнали о существовании иррационального числа.
      Исходя из определения о рациональных числах, можно выстроить логическую цепь и дать определение иррациональному числу.
      Итак, по сути, те действительные числа, которые не являются рациональными, элементарно и есть иррациональными числами.
      Десятичные дроби же, выражающие иррациональные числа, не периодичны и бесконечны.

      Примеры иррационального числа

      Рассмотрим для наглядности небольшой пример иррационально числа. Как мы уже поняли, бесконечные десятичные непериодические дроби называются иррациональными, к примеру:

      • Число «-5,020020002… (прекрасно видно, что двойки разделены последовательностью из одного, двух, трех и т.д. нулей)
      • Число «7,040044000444… (здесь ясно, что число четверок и количество нулей каждый раз цепочкой увеличивается на единицу).
      • Всем известное число Пи (3,1415…). Да, да — оно тоже является иррациональным.

      Вообще все действительные числа являются как рациональными так и иррациональными. Говоря простыми словами, иррациональное число нельзя представить ввиде обыкновенной дроби х/у.

      Общее заключение и краткое сравнение между числами

      Мы рассмотрели каждое число по отдельности, осталось отличие между рациональным числом и иррациональным:

      1. Иррациональное число встречается при извлечении квадратного корня, при делении окружности на диаметр и т.д.
      2. Рациональное число представляет обыкновенную дробь.

      Заключим нашу статью несколькими определениями:

      • Арифметическая операция, произведенная над рациональным числом, кроме деления на 0 (нуль), в конечном результате приведет тоже к рациональному числу.
      • Конечный результат же, при совершении арифметической операции над иррациональным числом, может привести как к рациональному так и к иррациональному значению.
      • Если же в арифметической операции принимают участие и те и другие числа (кроме деления или умножения на нуль), то результат нам выдаст иррациональное число.