Войти
Территория кровельщика
  • Дебиторская задолженность – учет, погашение, списание
  • Беспроцентный займ: проводки
  • Мсфо в россии: применение, влияние на национальный учет
  • Обоснованность расходов: претензии инспекторов беспочвенны Как экономически обосновать расходы
  • Как оправдать экономически неэффективные расходы Экономическая обоснованность расходов по вине сотрудника
  • Коэффициент критической ликвидности (ККЛ)
  • Принцип гюйгенса формула. Принцип гюйгенса

    Принцип гюйгенса формула. Принцип гюйгенса

    > Принцип Гюйгенса

    Изучите принцип Гюйгенса – законы отражения света и рефракции волн. Читайте формулировку принципа Гюйгенса, формула, эффекты дифракции, волновой фронт.

    Каждая точка на волновом фронте выступает источником всплесков, распространяющихся вперед на единой скорости.

    Задача обучения

    • Выразите принцип Гюйгенса.

    Основные пункты

    • Дифракция – волновой изгиб на краю отверстия или препятствия.
    • Этим принципом можно воспользоваться для определения отражения, объяснения рефракции и помех.
    • Передается в формуле: s = vt (s – дистанция, v – скорость распространения, t – время).

    Термин

    • Дифракция – волновой изгиб вокруг краев отверстия или преграды.

    Обзор

    В соответствии с принципом Гюйгенса, все точки на волновом фронте выступают источниками всплесков и распространяются на той же скорости, что и изначальная волна. Новым волновым фронтом будет прямая.

    Основа

    Кристиан Гюйгенс получил признание за то, что создал метод выявления волнового распространения. В 1678 году он предположил, что все точки, сталкивающиеся со световым возмущением, превращаются в источники сферической волны. Новый вид волны определяется суммой вторичных.

    Он не только объяснил линейное и сферическое распространение волн, но и вывел законы отражения света и рефракции в принципе Гюйгенса. Но ему не удалось объяснить дифракционные эффекты – отклонение от прямолинейного распространения, когда свет натыкается на край или помеху. В этом вопросе разобрался уже Августин-Жан Френель в 1816 году. Ниже представлена презентация принципа Гюйгенса в виде схемы.

    Принцип Гюйгенса можно использовать для волнового фронта. Все точки излучают полукруглые завитки, перемещающиеся на дистанцию s = vt

    Принцип Гюйгенса

    На верхнем изображении показан простой пример действия принципа Гюйгенса. Его можно передать в формуле:

    s = vt (s – дистанция, v – скорость распространения, t – время).

    Созданные волны формируются в полукруги, а новый фронт касается всплесков. Принцип функционирует для всех волновых типов и приносит пользу в характеристики отражения, рефракции и помех. Визуально он также разъясняет рефлексию и используется в ситуациях с преломлением.

    Его принцип можно использовать к прямому волновому фронту, перемещающемуся в среду, где скорость ниже. Луч отклоняется к перпендикуляру

    Принцип срабатывает, если волны натыкаются на зеркало. Касательная всплесков показывает, что новый волновой фронт отразился под углом, приравнивающимся к углу падения. Направленность устанавливается перпендикулярно (стрелки вниз)

    Примеры

    Вы часто видите действие этого принципа волны Гюйгенса в обычной жизни, но не замечаете осознанно. Проще всего объяснить на примере звуков. Если кто-то играет на музыкальном инструменте в комнате с плотно закрытой дверью, то вы ничего не услышите. Вам придется открыть ее и встать рядом. Это прямой эффект дифракции. Когда свет проходит сквозь мелкие отверстия, то начинает напоминать звук, но в меньших масштабах.

    Дифракция

    Дифракция – волновой изгиб, созданный при столкновении с краем отверстия или преградой.

    Явления интерференции света во всем их многообразии служат убедительнейшим доказательством волновой природы световых процессов. Однако окончательная победа волновых представлений была невозможна без истолкования с волновой точки зрения фундаментального и хорошо подтвержденного опытом закона прямолинейного распространения света.

    Волновые представления в той первоначальной форме , в которой их развивал Гюйгенс («Трактат о свете», 1690), не могли дать удовлетворительного ответа на поставленный вопрос. В основу учения о распространении света Гюйгенсом положен принцип, носящий его имя. Согласно представлениям Гюйгенса, свет, по аналогии со звуком, представляет собой волны, распространяющиеся в особой среде - эфире, занимающем все пространство, в частности заполняющем собой промежутки между частицами любого вещества, которые как бы погружены в океан эфира. С этой точки зрения естественно было считать, что колебательное движение частиц эфира передается не только той частице, которая лежит на «пути» светового луча, т. е. на прямой, соединяющей источник света L , (рис. 1.1) с рассматриваемой точкой А , но всем частицам, примыкающим к А , т. е. световая волна распространяется из А во все стороны, как если бы точка А служила источником света. Поверхность, огибающая эти вторичные волны, и представляет собой поверхность волнового фронта. Для случая, изображенного на рис. 1.1, эта огибающая (жирная дуга) представится частью шаровой поверхности с центром в L , ограниченной конусом, ведущим к краям круглого отверстия в экране МN . Принцип Гюйгенса позволил разъяснить вопросы отражения и преломления света, включая и сложную проблему о двойном лучепреломлении; но задача о прямолинейном распространении света по существу решена не была, ибо она не была поставлена в связь с явлениями отступления от прямолинейности, т. е. с явлениями дифракции.

    Причина лежит в том, что принцип Гюйгенса в его первоначальной форме был принципом, областью применения которого являлась область геометрической оптики. Выражаясь языком волновой оптики, он относился к случаям, когда длину волны можно было считать бесконечно малой по сравнению с размерами волнового фронта. Поэтому он позволял решать лишь задачи о направлении распространения светового фронта и не затрагивал по существу вопроса об интенсивности волн, идущих по разным направлениям. Этот недостаток воспол
    нил Френель, который вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции волн. Благодаря этому огибающая поверхность элементарных волн, введенная Гюйгенсом чисто формально, приобрела ясное физическое содержание как поверхность, где благодаря взаимной интерференции элементарных волн результирующая волна имеет заметную интенсивность.

    Модифицированный таким образом принцип Гюйгенса-Френеля становится основным принципом волновой оптики и позволяет исследовать вопросы, относящиеся к интенсивности результирующей волны в разных направлениях, т. е. решать задачи о дифракции света (см. ниже). В соответствии с этим был решен вопрос о границах применимости закона прямолинейного распространения света, и принцип Гюйгенса-Френеля оказался применимым к выяснению закона распространения волн любой длины.

    Для отыскания интенсивности (амплитуды) результирующей волны нужно, согласно Френелю, следующим образом формулировать принцип Гюйгенса.

    Окружим источник L воображаемой замкнутой поверхностью S любой формы (рис. 1.2). Правильное значение интенсивности (амплитуды) возмущения в любой точке В за пределами S может быть получено так: устраним L , а поверхность S будем рассматривать как светящуюся поверхность, излучение отдельных элементов которой, приходя в В , определяет своей совокупностью действие в этой точке. Излучение каждого элемента ds поверхности S надо представлять себе как сферическую волну (вторичная волна), которая, приносит в точку В колебание:

    ,

    где а 0 определяется амплитудой, а φ - фазой действительного колебания, дошедшего от L до элемента ds , находящегося на расстоянии r от точки В . При этом размеры элемента ds предполагаются настолько малыми, что φ и r для любой части его можно считать имеющими одни и те же значения. Другими словами, каждый элемент ds рассматривается как некоторый вспомогательный источник, так что амплитуда a 0 , пропорциональна площади ds .

    Постулат Френеля, позволяющий определить a 0 и φ через амплитуду и фазу дошедшего до ds колебания, представляет собой некую гипотезу, пригодность которой может быть установлена сравнением делаемых с ее помощью заключений с результатами опыта.

    Так как фазы всех вспомогательных источников определяются возмущением, идущим из L , то они строго согласованы между собой, и, следовательно, вспомогательные источники когерентны . Поэтому вторичные волны, исходящие из них, будут интерферировать между собой. Их совокупное действие в каждой точке может быть определено как интерференционный эффект, и следовательно, идея Гюйгенса о специальной роли огибающей перестает быть допущением, а должна явиться лишь следствием законов интерференции. Согласно приведенному выше постулату Френеля вопрос о вспомогательных источниках, заменяющих L , решается однозначно, как только выбрана вспомогательная поверхность S. Выбор же этой поверхности вполне произволен; поэтому для каждой конкретной задачи се следует выбрать наивыгоднейшим для решения способом. Если вспомогательная поверхность S совпадает с фронтом волны, идущей из L . (представляет собой сферу с центром в S ), то все вспомогательные источники будут иметь одинаковую фазу. Если же выбор S сделан иначе, то фазы вспомогательных источников не одинаковы, но источники, конечно, остаются когерентными.

    В том случае, когда между источниками L и точкой наблюдения имеются непрозрачные экраны с отверстиями, действие этих экранов может быть учтено следующим образом. Мы выбираем поверхность S так, чтобы она всюду совпадала с поверхностью экранов, а отверстия в них затягивала произвольным образом, выбранным в зависимости от разбираемой проблемы. На поверхности непрозрачных экранов амплитуды вспомогательных источников должны считаться равными нулю; на поверхности же, проходящей через отверстия экранов, амплитуды выбираются в согласии с постулатом Френеля, т. е. так, как если бы экран отсутствовал. Таким образом, предполагается, что материал экрана не играет, роли, если только экран не прозрачен.

    Вычисляя результаты интерференции элементарных волн, посылаемых вспомогательными источниками, мы приходим к значению амплитуды (интенсивности) в любой точке В , т. е. определяем закономерность распространения света. Результаты этих вычислений подтверждаются данными опыта. Таким образом, по методу Гюйгенса-Френеля удается получить правильное решение вопроса о распределении интенсивности света как в случае свободного распространения световых волн (прямолинейное распространение), так и в случае наличия задерживающих экранов (дифракция).

    Первой задачей, которую должен был рассмотреть Френель, выдвинув новую формулировку принципа Гюйгенса, явилась задача о прямолинейном распространении света. Френель решил ее путем рассмотрения взаимной интерференции вторичных волн, применив чрезвычайно наглядный прием, заменяющий сложные вычисления и имеющий общее значение при разборе задач о распространении волн. Метод этот получил название метода зон Френеля .

    Рассмотрим действие световой волны, испущенной из точки А , в какой-либо точке наблюдения В . Согласно принципу Гюйгенса-Френеля заменим действие источника А действием воображаемых источников, расположенных на вспомогательной поверхности S .

    В качестве такой вспомогательной поверхности S выберем поверхность фронта волны, идущей из А (поверхность сферы с центром А , рис.. 1.3). Вычисление результата интерференции вторичных волн очень упрощается, если применить следующий указанный Френелем прием: для вычисления действия в точке В соединяем А с В и разбиваем поверхность S на зоны такого размера, чтобы расстояния от краев зоны до В отличались на λ /2 т. е.

    M 1 B – M 0 B = M 2 B – M 1 B =M 3 B – M 2 B =…= λ/2

    (см. рис. 1.3). Нетрудно вычислить размеры полученных таким образом зон. Из рис. 1.4 получаем для первой зоны

    r 2 =a 2 – (a – x) 2 = (b+ λ/2) 2 – (b+x) 2

    Так как λ очень мало по сравнению с а пли b , то

    ,

    и, следовательно, площадь сферического сегмента, представляющего первую, или центральную зону, есть:

    Для площади сегмента, представляющего две первые зоны, найдем значение , т.е. площадь второй зоны также равна . Практически ту же площадь будет иметь и каждая из всех последующих зон. Таким образом, построение Френеля разбивает поверхность сферической волны на равновеликие зоны, каждая из которых имеет площадь

    Для дальнейшего вычислении надо только принять во внимание, что действие отдельных зон на точку В тем меньше, чем больше угол φ между нормалью к поверхности зоны и направлением на В . Таким образом, действие зон постепенно убывает от центральной зоны (около М 0) к периферическим. Произвольное введение этого вспомогательного ослабляющего множителя есть один из недостатков метода Френеля.

    Для получения окончательного результата можно рассуждать следующим образом: пусть действие центральной зоны в точке В выражается возбуждением колебания с амплитудой s 1 , действие соседней зоны - колебанием с амплитудой s 2 , следующей - с амплитудой s 3 и т. д. Как указано, действие зон постепенно (хотя и медленно) убывает от центра к периферии, так что s 1 > s 2 > s 3 > s 4 и т. д.; действие п -й зоны s n может быть очень малым, если п достаточно велико. Кроме того, благодаря выбранному способу разбивки на зоны легко видеть, что действия соседних зон ослабляют друг друга. Действительно, так как

    M 1 B – M 0 B=λ/2 и M 2 B – M 1 B=λ/2

    то воображаемые источники зоны М 0 М 1 расположены на ½ λ ближе к В , чем соответственные источники зоны М 1 М 2 , так что посылаемые колебания дойдут до В в противоположных фазах. Таким образом, для точки В действие центральной зоны ослабится действием соседней зоны и т. д. Продолжая эти рассуждения, найдем, что окончательное значение амплитуды колебания, возбужденного в точке В всей совокупностью зон, т. е. всей световой волной, будет равно:

    s=s 1 – s 2 + s 3 – s 4 + s 5 – s 6 +…=s 1 – (s 2 - s 3) – (s 4 – s 5) – (s 6 – s 7) – … (1.1)

    Из условия s 1 > s 2 > s 3 > s 4 ... следует, что все выражения в скобках положительны, так что s <s 1 . Освещенность Е в точке наблюдения В пропорциональна квадрату результирующей амплитуды колебаний. Следовательно, Е ~ s 2 < s 1 2 |.

    Итак, амплитуда s результирующего колебания, получающегося вследствие взаимной интерференции света, идущего к точке В от различных участков нашей сферической волны, меньше амплитуды, создаваемой действием одной центральной зоны. Таким образом, действие всей волны на точку В сводится к действию ее малого участка, меньшего, чем центральная зона с площадью . Длина световой волны λ весьма мала (для зеленого света λ = 5 10 -4 мм). Поэтому даже для расстоянии а и b порядка 1 м площадь действующей части волны меньше 1 мм 2 . Следовательно, распространение света от A к В действительно происходит так, как если бы световой поток шел внутри очень узкого канала вдоль АВ , т. е. прямолинейно.

    Это не значит, однако, что если мы поместим на линии АВ любой небольшой непрозрачный экран, то до точки В свет не дойдет; ведь внесение такого экрана, который прикроет, например, первую зону, нарушит правильность наших рассуждений. В этом случае выпадет первый член знакопеременного ряда (1.1), и теперь окажется, что s < |s 2 | и т. д., т. е. s меньше модуля s m , где т - номер первой открытой у края экрана зоны. Если т не велико, например, т < 10, то освещенность в точке наблюдения В на оси экрана останется почти такой же, как и в его отсутствие. Но если маленький экранчик имеет неровные края с зазубринами, сравнимыми с шириной зоны Френеля, по которой проходит этот край, то он существенно уменьшает интенсивность в точке наблюдения В.

    Принципы Гюйгенса-Френеля стали основой корпускулярно-волновой теории света. В начале XIX века Христиан Гюйгенс, делая опыты над световыми волнами, предположил, что существуют частицы, являющиеся переносчиками «световой энергии». Этот процесс представлялся ему как последовательная передача энергии от одной корпускулы к следующей путем соударения. Ученые, которые поддерживали эту теорию, утверждали, что свет движется эфире, среде с особыми физическими свойствами, позволяющими частицам не терять энергию при движении. Этот эфир пронизывает все окружающее пространство, а также проходит сквозь предметы, позволяя световым волнам распространяться во все стороны.

    Основы теории

    То, на чем базировались принципы Гюйгенса-Френеля, можно сформулировать следующим образом: распространение света заключается в том, что световое возбуждение, исходящее от источника света, передается соседним точкам в пространстве, которые генерируют вторичные световые волны и передают их соседним точкам. Поля распространения вторичных волн от соседних точек накладываются друг на друга усиливаясь или затухая. Подтверждением это теории служат дифракция, интерференция, дисперсия и отражение, которые будут подробнее рассмотрены ниже.

    Интерференция

    Когда две световые волны накладываются друг на друга, они могут либо выступить в роли усиливающего фактора, либо ослабить колебания друг друга. Открытие этого явления произошло за семнадцать лет до формулирования принципа Гюйгенса, в 1801 году Томасом Юнгом, англичанином, врачом по образованию. Ученый заметил, что если на картоне проколоть два очень маленьких отверстия рядом друг с другом и поставить этот экран на пути узконаправленного пучка световых волн, например щели в занавеске, то на стене позади экрана вместо ожидаемых двух светлых пятен будет несколько светлых и темных колец. Для того чтобы опыт был успешным, необходимо всего одно условие - световые волны должны быть согласованы в своих колебаниях.

    Дифракция

    Световая волна, проходя через аэрозоли, жидкости или твердые тела, может отклоняться от прямолинейной оси движения. Это явление называется дифракцией. Его используют в оптических приборах для получения четкого изображения даже наименьших предметов, или объектов, находящихся на значительном расстоянии.

    Одновременно с Гюйгенсом, в 1818 году, Френель сделал презентацию доклада о дифракции Парижскому научному обществу. Его опыт и теоретические выкладки были одобрены, а один из членов комиссии, физик Пуассон, на основе этой теории сделал заключение, что если поставить на пути дифракционно отклоненных лучей непрозрачное круглое препятствие, то на экране будет отражаться светлое пятно, а не тень предмета. Позднее это предположение было проверено опытным путем физиком Д.Ф. Араго. Дифракция света (принцип Гюйгенса-Френеля) нашла свое подтверждение через, казалось бы, противоречащую гипотезу. Волновая теория света заняла свое место среди других верифицированных постулатов физики.

    Дисперсия

    Помимо дифракции и интерференции принципы Гюйгенса-Френеля включают в себя и явление дисперсии. По сути, это разложение пучка света на отдельные волны после прохождения через аэрозоль, жидкость или твердое тело. Это явление было открыто еще Исааком Ньютоном во время опытов с призмой. Расщепление света можно объяснить тем, что белый луч состоит из световых волн различной длины. Проходя через препятствие, свет отражается под разным углом, так как коэффициент отражения находится в прямой зависимости от длины волны. Из-за этого волны одной длины формируют отдельные пучки, которые мы воспринимаем в разном цветовом спектре: от красного до фиолетового.

    Поляризация

    Объяснить этот физический принцип довольно сложно. Для больше наглядности можно использовать опыт прохождения света между двумя призмами. Суть его состоит в том, что если твердые прозрачные тела ориентированы одинаково, то свет проходит через них, не теряя своей яркости, если же поставить их перпендикулярно друг другу, то луч не будет проходить. Это объясняется тем, какой вектор направленности имеют световые волны. Если он совпадает с плоскостью, на которой расположен кристалл, то ослабления не происходит, а если не совпадает, то луч света становится менее ярким или вообще не проходит через предмет, ввиду того, что часть волн гасится.

    Отражение

    Если на пути световой волны возникает твердое или жидкое тело, то она полностью или частично отражается он него. Таким образом, мы можем видеть окружающие нас предметы. Когда световая волна достигает границы раздела сред (например, газ/жидкость или газ/твердое тело), то она полностью или частично отражается обратно. Угол, который образует между лучом света и перпендикуляром, опушенным на поверхность (границу фаз), называется углом падения, а тот, который находится между перпендикуляром и отраженным лучом - углом отражения.

    Законы отражения:

    1. Падающий и отраженный лучи и перпендикуляр существуют в одной плоскости.
    2. Угол падения равен углу отражения.
    3. Ход световых лучей обратим.

    Диффузное и зеркальное отражение

    В зависимости от типа поверхности, от которой отражается луч, можно выделить зеркальное и диффузное отражение. Зеркальным называется отражение, которое наблюдается от очень гладкой поверхности, когда неровности не превышают длину волны. Тогда отраженный луч будет параллелен падающему. Это встречается в зеркалах, стеклах, полированном металле. Если неровности поверхности больше длины световой волны, то отраженные лучи направлены под разными углами относительно угла падения. Именно из-за этого мы можем видеть предметы, которые сами не являются источниками света. Впервые прийти к такому умозаключению помог принцип Гюйгенса. Закон отражения света получил математическое и практическое обоснование, опираясь на уже известные понятия интерференции и дифракции.

    Практическое применение

    Принципы Гюйгенса-Френеля легли в основу проектирования оптических приборов, а также стали базисом корпускулярно-волновой теории света. Англичанин Д. Табор, лауреат Нобелевской премии по физике, используя этот закон, изобрел голографию. Хотя практическое ее воплощение стало возможно только с внедрением в массовое пользование узконаправленных интенсивных источников света - лазеров. По сути, голограмма - это запечатленная на фотопластинке картина интерференции, образующаяся световыми волнами, которые усиливают и ослабляют друг друга, отражаясь от предмета под разными углами.

    Методика такого запечатления трехмерного изображения находит применение в сфере хранения информации, потому что на небольшой поверхности голограммы помещается большее количество данных, чем на микрофотографиях. В качестве наглядного примера можно привести расположение энциклопедического словаря объемом в тысячу триста страниц на фотопластинке 3х3 см.

    В разработке находятся такие приборы, как голографический электронный микроскоп, позволяющий создавать трехмерные изображения наименьших структурных единиц живой материи, а также голографическое кино и телевидение, первыми версиями которого являются 3D-киносеансы.

    Каждую точку на пути распространения волны можно считать источником вторичных волн.

    Представьте себе волну на поверхности водоема. Проще всего, казалось бы, описать волновое движение воды чисто механически - рассчитать силы гидродинамического давления, действующие на частицы водной поверхности снизу, и противодействующие им силы гравитационного притяжения, суммарное воздействие которых и приводит к тому, что поверхность ритмично колышется вверх-вниз. Однако в конце XVII века голландский физик Христиан Гюйгенс представил себе волновую картину несколько по-иному и вывел, благодаря этому, мощный принцип, в равной мере применимый к любым волнам - начиная от волн на водной поверхности и заканчивая гамма-излучением далеких галактик.

    Смысл принципа Гюйгенса проще всего понять, если представить себе, что гребень волны на водной поверхности на мгновение застыл. Теперь представьте, что в этот миг вдоль всего фронта волны в каждую точку гребня брошено по камню, в результате чего каждая точка гребня становится источником новой круговой волны. Практически всюду вновь возбужденные волны взаимно погасятся и не проявятся на водной поверхности. И лишь вдоль фронта исходной волны вторичные маленькие волны взаимно усилятся и образуют новый волновой фронт, параллельный предыдущему и отстоящий от него на некоторое расстояние. Именно по такой схеме, согласно принципу Гюйгенса, и распространяется волна.

    Так почему столь парадоксальный, казалось бы, взгляд на столь обычное природное явление, как распространение волн, оказывается полезен ученым? Представьте, что будет при столкновении волны с препятствием на пути ее распространения. Вернемся к примеру волны на водной поверхности и представим, что волна ударилась о бетонный волнорез под углом к нему. Согласно принципу Гюйгенса, из тех точек волнового фронта, которые пришлись на волнорез, вторичные волны распространяться не будут, а из остальных будут. В результате волна продолжит свой путь и восстановится позади волнореза. То есть, фактически, при столкновении с препятствием волна спокойно огибает его, и любой моряк вам это подтвердит. (Это свойство волн называется дифракцией.)


    Имеется и целый ряд других полезных применений принципа Гюйгенса при рассмотрении волновых явлений - порой весьма неожиданных. Он широко используется в волновой оптике и в телекоммуникационной инженерии, где волны (световые и радио- соответственно) регулярно сталкиваются с препятствиями на пути их распространения и огибают их.

    К этому открытию Гюйгенса привели занятия астрономией, для развития которой он сделал немало, в частности, став в 1655 году первооткрывателем Титана - самого большого спутника Сатурна. Автоматическая космическая станция НАСА «Кассини» в 2004 году должна достигнуть Сатурна и отправить на поверхность Титана спускаемый аппарат для исследования состава его атмосферы и грунта. Этот спускаемый аппарат называется «Гюйгенс». Так наука чтит своих основателей.

    Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракции. Огюстен Жан Френель в 1815 году дополнил принцип Гюйгенса, введя представления о когерентности и интерференции элементарных волн, что позволило рассматривать на основе принципа Гюйгенса - Френеля и дифракционные явления.

    Принцип Гюйгенса-Френеля формулируется следующим образом:

    Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.


    Густав Кирхгоф придал принципу Гюйгенса строгий математический вид, показав, что его можно считать приближенной формой теоремы, называемой интегральной теоремой Кирхгофа.

    Фронтом волны точечного источника в однородном изотропном пространстве является сфера. Амплитуда возмущения во всех точках сферического фронта волны, распространяющейся от точечного источника, одинакова.

    Дальнейшим обобщением и развитием принципа Гюйгенса является формулировка через интегралы по траекториям, служащая основой современной квантовой механики.

    Использованы материалы: Энциклопедия Джеймса Трефила «Природа науки. 200 законов мироздания».

    Комментарии: 0

      Волны - один из двух путей переноса энергии в пространстве (другой путь - корпускулярный, при помощи частиц). Волны обычно распространяются в какой-то среде (например, волны на поверхности озера распространяются в воде), однако направление движения самой среды не совпадает с направлением движения волн. Представьте себе поплавок, покачивающийся на волнах. Поднимаясь и опускаясь, поплавок повторяет движения воды, в то время как волны проходят мимо него. Явление интерференции происходит при взаимодействии двух и более волн одинаковой частоты, распространяющихся в различных направлениях.

      Основы явления дифракции можно понять, если обратиться к принципу Гюйгенса, согласно которому каждая точка на пути распространения светового луча может рассматриваться как новый независимый источник вторичных волн, и дальнейшая дифракционная картина оказывается обусловленной интерференцией этих вторичных волн. При взаимодействии световой волны с препятствием часть вторичных волн Гюйгенса блокируется.

      Что заставляет взаимодействовать все в нашей Вселенной? Ускоряются ли тела или замедляются, меняют свое направление или мчатся вперед – почему они ведут себя именно так? Какие законы являются общими и для малейших частиц и для Галактик? С чего все началось, как развивается и как работает? Эти и другие вопросы волновали человека с самых древних времен… Где же ключ к пониманию тайн механической Вселенной? США, 1985 год.

      Вам, наверняка, хоть раз в жизни доводилось стоять у дороги, по которой проносится машина со спецсигналом и включенной сиреной. Пока вой сирены приближается, его тон выше, затем, когда машина поравняется с вами, он понижается, и, наконец, когда машина начинает удаляться, он понижается еще, и получается знакомое: ййййииииээээЭААААОоооуууумммм - такой примерно звукоряд. Сами того, возможно, не сознавая, вы при этом наблюдаете фундаментальнейшее (и полезнейшее) свойство волн.

      Имеется целый ряд типов электромагнитного излучения, начиная с радиоволн и заканчивая гамма-лучами. Электромагнитные лучи всех типов распространяются в вакууме со скоростью света и отличаются друг от друга только длинами волн.

    Гордюнин С. А. Принцип Гюйгенса //Квант. - 1988. - № 11. - С. 54-56.

    По специальной договоренности с редколлегией и редакцией журнала "Квант"

    Этот принцип был сформулирован Христианом Гюйгенсом в его «Трактате о свете», опубликованном в 1690 году. В то время уже не возникало больших сложностей при описании движения частиц. В свободном пространстве частицы движутся прямолинейно и равномерно; под влиянием внешних воздействий они замедляются, ускоряются, меняют направление движения (преломляются или отражаются) - и все это можно рассчитать. Вместе с тем, законы распространения волн - отражение, преломление, огибание препятствий (дифракция) не находили объяснения. И Гюйгенс предложил принцип, на основании которого это можно было бы сделать.

    Очевидно, на мысль его навели рассуждения о причинах распространения волновых процессов. От камня, брошенного в воду, по поверхности бегут круговые волны. Процесс этот продолжается и после того, как камень упал на дно, т. е. когда уже нет источника, породившего первые волны. Отсюда следовало, что источниками волн являются сами волновые возбуждения. Гюйгенс сформулировал это следующим образом:

    Каждая точка, до которой доходит волновое возбуждение, является в свою очередь центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.

    Легко представить, например, как распространяются плоские и сферические волны (рис. 1). Огибающей вторичных волн через время Δt является для плоской волны плоскость, сдвинутая на расстояние c Δt , а для сферической - сфера радиусом R + c Δt , где c - скорость распространения вторичных волн, R - радиус первоначальной сферической волны.

    По сути, принцип Гюйгенса в такой формулировке является просто геометрическим рецептом построения поверхности, огибающей вторичные волны. Эта поверхность отождествляется с волновым фронтом, и таким образом определяется направление распространения волны.

    Гюйгенс первоначально сформулировал свой принцип для световых волн и применил его для вывода законов отражения и преломления света на границе раздела сред. Прежде всего, сам факт наличия отраженной и преломленной волн непосредственно следовал из принципа Гюйгенса, и это уже было большим успехом. По Гюйгенсу, каждая точка границы сред по мере достижения ее фронтом падающей волны становится источником вторичных волн, которые распространяются в обе граничащие среды. Результатом наложения этих вторичных волн в первой среде, из которой падает волна, является волна отраженная, а результатом наложения вторичных волн во второй среде - волна преломленная.

    Конечно, мы на основании принципа Гюйгенса не можем ответить на вопрос об интенсивности отраженной и преломленной волн, поскольку для этого нужно знать хотя бы их физическую природу (которая в принципе Гюйгенса вообще не «участвует»). Но геометрические законы отражения и преломления совершенно не зависят ни от физической природы волн, ни от конкретного механизма их отражения и преломления. Они для всех волн одинаковы.

    Пусть υ - скорость плоской падающей волны, α - угол ее падения (рис. 2). Тогда фронт падающей волны бежит по границе раздела двух сред со скоростью \(~\frac{\upsilon}{\sin \alpha}\). И отраженная, и преломленная волны порождаются падающей, поэтому их фронты бегут вдоль границы с той же скоростью, т. е.

    \(~\frac{\upsilon}{\sin \alpha} = \frac{\upsilon_1}{\sin \alpha_1} = \frac{\upsilon_2}{\sin \alpha_2}\) .

    Углы α 1 и α 2 определяют направления распространения фронтов отраженной и преломленной волн. Но так как в плоской волне лучи перпендикулярны волновым фронтам, то эти же соотношения выполняются и для отраженных и преломленных лучей.

    Объяснение законов преломления и отражения явилось сильным аргументом в пользу справедливости принципа Гюйгенса. Однако, естественно, он вызывал и много сомнений и вопросов. Почему нет обратной волны (ведь вторичные источники испускают сферические волны, распространяющиеся и против фронта)? Почему свет проходит сквозь отверстие прямолинейно (ведь вторичные волны должны распространяться и в область геометрической тени)? Сам Гюйгенс считал, что все это связано с малой интенсивностью вторичных волн. Но ведь звуковые волны загибаются - мы слышим звук, источник которого находится за углом.

    Ответы на эти и другие вопросы дал Огюстен Френель в начале XIX века. Он дополнил принцип Гюйгенса важным и естественным положением:

    Результирующее волновое возмущение в данной точке пространства является следствием интерференции элементарных вторичных волн Гюйгенса.

    Вторичные волны испускаются «источниками», амплитуда и фаза колебаний которых определяются первоначальным возмущением, и поэтому такие источники когерентны. Совокупное действие этих источников, т. е. интерференционный эффект, заменяет идею Гюйгенса об огибающей, которая в теории Френеля приобрела ясный физический смысл как поверхность, где результирующая волна вследствие интерференции имеет заметную интенсивность. Модифицированный принцип Гюйгенса - Френеля позволяет более полно исследовать вопрос о распространении волн в неоднородной среде (в виду математической сложности этот вопрос выходит за рамки школьного курса физики). Итак, надо ясно представлять как достоинства (простоту и наглядность), так и недостатки (отсутствие физического содержания) первого принципа теории распространения волн - принципа Гюйгенса.