Войти
Территория кровельщика
  • Откровение Иоанна Богослова
  • Божественная литургия текст с пояснениями
  • Есть ли предназначенные к погибели
  • Отче наш, Иже еси на Небесех!
  • Предопределение и свободная воля
  • : Религиозно-философские взгляды Льва Толстого
  • Механизм окислительного фосфорилирования. Субстратное и окислительное фосфорилирование

    Механизм окислительного фосфорилирования. Субстратное и окислительное фосфорилирование

    Молекулы НАДН и ФАДН 2 , образуемые в реакциях окисления углеводов, жирных кислот, спиртов и аминокислот, далее поступают в митохондрии, где ферментами дыхательной цепи осуществляется процесс окислительного фосфорилирования .

    Окислительное фосфорилирование

    Окислительное фосфорилирование – это многоэтапный процесс, происходящий во внутренней мембране митохондрий и заключающийся в окислении восстановленных эквивалентов (НАДН и ФАДН 2) ферментами дыхательной цепи и сопровождающийся синтезом АТФ.

    Впервые механизм окислительного фосфорилирования был предложен Питером Митчеллом. Согласно этой гипотезе перенос электронов , происходящий во внутренней митохондриальной мембране, вызывает выкачивание ионов Н + из матрикса митохондрий в межмембранное пространство. Это создает градиент концентрации ионов Н + между цитозолем и замкнутым внутримитохондриальным пространством. Ионы водорода в норме способны возвращаться в матрикс митохондрий только одним способом – через специальный фермент, образующий АТФ – АТФ-синтазу .

    По современным представлениям внутренняя митохондриальная мембрана содержит ряд мультиферментных комплексов, включающих множество ферментов. Эти ферменты называют дыхательными ферментами , а последовательность их расположения в мембране – дыхательной цепью или электрон-транспортной цепью (англ. electron transport chain ).

    В целом работа дыхательной цепи заключается в следующем:

    1. Образующиеся в реакциях катаболизма НАДН и ФАДН 2 передают атомы водорода (т.е. протоны водорода и электроны) на ферменты дыхательной цепи.
    2. Электроны движутся по ферментам дыхательной цепи и теряют энергию.
    3. Эта энергия используется на выкачивание протонов Н + из матрикса в межмембранное пространство.
    4. В конце дыхательной цепи электроны попадают на кислород и восстанавливают его до воды.
    5. Протоны Н + стремятся обратно в матрикс и проходят через АТФ-синтазу.
    6. При этом они теряют энергию, которая используется для синтеза АТФ.

    Живые организмы находятся в постоянной и неразрывной связи с окружающей средой. Эта связь осуществляется в процессе обмена веществ. Обмен веществ состоит из 3 этапов: поступление веществ в организм, метаболизм и выделение конечных продуктов из организма.

    Поступление веществ в организм происходит в результате дыхания (кислород) и питания. Источником энергии для человека служит распад органических веществ пищи. С питательными веществами поступают преимущественно белки, полисахариды, жиры, которые в процессе пищеварения расщепляются на более мелкие молекулы (глюкоза, аминокислоты, жирные кислоты, глицерол). В клетках эти вещества подвергаются превращениям, включаясь в метаболизм (обмен веществ). Они могут использоваться для синтеза более сложных молекул (анаболизм ) либо распадаются до конечных продуктов в процессах катаболизма .

    Катаболизм - процесс расщепления органических молекул до конечных продуктов. Конечные продукты превращений органических веществ у животных и человека - СО 2 , Н 2 О и мочевина. В процессы катаболизма включаются метаболиты, образующиеся как при пищеварении, так и при распаде структурно-функциональных компонентов клеток.

    Анаболизм объединяет биосинтетические процессы, в которых простые строительные блоки соединяются в сложные макромолекулы, необходимые для организма. В анаболических реакциях используется энергия, освобождающаяся при катаболизме.

    Биологическое окисление

    Распад веществ в тканях сопровождается потреблением кислорода и выделением СО 2 . При этом выделяется энергия, необходимая для функционирования клеток. Вдыхаемый кислород используется для синтеза метаболической воды с участием водорода окисляемых субстратов в процессе тканевого дыхания .

    SH 2 + ½ О 2 S + Н 2 О + энергия

    Например, окисление 1 моль глюкозы происходит с выделением 2780 кДж энергии. Энергия окисляющихся веществ используется клетками для синтеза АТФ из АДФ. Фосфорилирование АДФ в клетках происходит путем присоединения Н 3 РО 4 . Реакция идет с затратой энергии.

    АТФ - молекула, богатая энергией, поскольку она содержит две макроэргические связи. Некоторые биосинтетические реакции в организме могут протекать при участии других нуклеозидтрифосфатов, аналогов АТФ; к ним относят ГТФ, УТФ и ЦТФ. Все эти нуклеотиды, в свою очередь, образуются при использовании свободной энергии концевой фосфатной группы АТФ. Наконец, за счёт свободной энергии АТФ совершаются различные виды работы, лежащие в основе жизнедеятельности организма, например, такие как мышечное сокращение или активный транспорт веществ.

    При использовании АТФ в качестве источника энергии чаще всего происходит гидролиз только одной макроэргической связи, при этом выделяется около 50 кДж/моль энергии и опять образуется АДФ. Содержание АТФ в организме человека невелико и составляет около 50 г. учитывая, что клетки не способны накапливать АТФ, а расход энергии происходит постоянно, в организме также постоянно идет синтез АТФ из АДФ и неорганического фосфата Н 3 РО 4 . За сутки в организме человека может синтезироваться до 60 кг АТФ.

    В зависимости от источника энергии, обеспечивающего присоединение фосфатного остатка, выделяют два типа фосфорилирования АДФ: окислительное и субстратное.

    Субстратное фосфорилирование АДФ идет за счет энергии макроэргических связей соединений (1,3-бисфосфоглицерата и фосфоенолпирувата, сукцинил-СоА). Этот процесс может происходить как в матриксе митохондрий, так и в цитоплазме клеток независимо от присутствия кислорода.

    Окислительное фосфорилирование АДФ - превращение АДФ в АТФ происходит с использованием энергии переноса электронов от органических веществ к кислороду. Энергию для окислительного фосфорилирования поставляют ОВР. Процесс может происходить только в аэробных условиях с участием ферментов цепи переноса электронов (ЦПЭ) и АТФ-синтазы.

    Окислительное фосфорилирование АДФ – основной механизм синтеза АТФ в организме. Оно происходит в митохондриях, которые являются основными поставщиками АТФ и могут рассматриваться как «энергетические станции» клетки.

    Мембраны митохондрий сильно различаются по составу и функциям. Внешняя мембрана свободно проницаема для многих небольших молекул до 5000кДа. Проницаемость внутренней мембраны ограничена и определяется наличием белков-переносчиков. Внутренняя мембрана митохондрии богата белками (80%). В нее включены все ферментные комплексы и компоненты ЦПЭ, отвечающей за окислительное фосфорилирование АДФ.

    Одним из самых крупных белков внутренней мембраны митохондрий является АТФ-синтаза.

    Это белок, состоящий из двух олигомерных комплексов (F 0 и F 1). F 0 состоит из 6 гидрофобных протомеров типа a, b, c, погруженных во внутреннюю мембрану митохондрий и формирующих Н + - проводящий канал. 3 дополнительные субъединицы связывают комплекс F 0 с комплексом F 1 . Комплекс F 1 выступает в матриксе митохондрии и образует «пузырек» на внутренней поверхности мембраны митохондрии, имеющий активный центр для связывания АДФ иН 3 РО 4 . В нем происходит фосфорилирование и образование АТФ.

    Межмембранное пространство также играет роль в производстве АТФ, так как может накапливать протоны, создающие заряд на поверхности внутренней мембраны, необходимый для активации АТФ-синтазы.

    Матрикс митохондрий состоит из ферментов, ДНК, РНК и рибосом. ОВР в клетке происходят в матриксе митохондрий. Важнейшими источниками энергии служат реакции дегидрирования. В реакциях дегидрирования электроны и протоны переходят от органических субстратов на коферменты NAD- и FAD-зависимых дегидрогеназ. Электроны, обладающие высоким энергетическим потенциалом, передаются от восстановленных коферментов NADH и FADH 2 к кислороду через цепь переносчиков, локализованных во внутренней мембране митохондрий. Восстановление молекулы О 2 происходит в результате переноса 4 электронов. При каждом присоединении к кислороду 2 электронов, поступающих к нему по цепи переносчиков, из матрикса поглощаются 2 протона, в результате чего образуется молекула Н 2 О.

    22 23 ..

    7.2 Энергетический метаболизм, его сущность. Макроэргические соединения. Типы фосфорилирования

    Способы получения энергии у микроорганизмов различны. Некоторые микроорганизмы (фототрофы) способны перерабатывать химическую энергию солнечного света, другие (хемотрофы) получают энергию путем окисления химических веществ.
    Окислением принято считать процесс отнятия двух атомов водорода. Этот процесс носит название дегидрирование. Восстановление того или иного соединения представляет собой присоединение двух атомов водорода (гидрирование).
    Окисление может быть представлено следующим образом:

    АН 2 ® А + 2Н + ,

    В + 2Н + ® ВН 2 + А

    Суммарное уравнение: АН 2 + В ® BH 2 + А

    В этой реакции АН 2 – восстановитель или донор ионов водорода, а В – окислитель (акцептор), так как присоединяет ионы водорода.

    Водород и электроны, отнятые от окисляемого субстрата (донора), переносятся к конечному акцептору не непосредственно, а ступенчато, поэтапно с помощью окислительно-восстановительных ферментов. К таким ферментам относятся дегидрогеназы, которые переносят водород, и ферменты цитохромной системы – цитохромы и цитохромоксидаза, которые переносят электроны. Дегидрогеназы и цитохромная система образуют дыхательную цепь.

    Набором окислительно-восстановительных ферментов объясняется отношение микроорганизмов к молекулярному кислороду. В зависимости от способа получения энергии и от конечного акцептора водорода микроорганизмы можно разделить на три физиологические группы:

    облигатные аэробы – микроорганизмы, которые не могут существовать без кислорода. Энергию эти микроорганизмы получают в результате окисления веществ в присутствии кислорода воздуха (дыхания). У этих микроорганизмов в клетках имеется полный набор окислительно-восстановительных ферментов, осуществляющих перенос протона водорода и электронов на кислород. Примером микроорганизмов этой группы являются микроскопические грибы и уксуснокислые бактерии;

    облигатные анаэробы – микроорганизмы, для которых кислород является клеточным ядом. Такие микроорганизмы получают энергию в процессе брожения. В составе клеток облигатных анаэробов имеются специфические дегтдрогеназы и отсутствуют цитохромы и цитохромоксидаза. Представителями облигатных анаэробов являются маслянокислые бактерии рода Clostridium , бифидобактерии;

    факультативные анаэробы – микроорганизмы, способные жить как в присутствии кислорода, так и без него (осуществляют как дыхание, так и брожение). В клетках факультативных анаэробов присутствуют кроме окислительно-восстановительных ферментов, переносящих водород и электроны на кислород (участвуют в процессе дыхания) специфические ферменты (участвуют в процессе брожения). К факультативным анаэробам относятся дрожжи, молочнокислые, пропионовокислые бактерии и другие микроорганизмы.

    Энергия, образуемая при энергетическом обмене, трансформируется в энергию макроэргических связей молекул АТФ. Процесс образования АТФ называется фосфорилированием.

    Механизм образования АТФ у разных групп микроорганизмов неодинаков. Поэтому различают субстратное, окислительное и фотофосфорилирование.

    Фотофосфорилирование – образование АТФ при поглощении квантов света молекулами хлорофилла. В результате от молекулы хлорофилла отрываются электроны, которые, проходя по цепи переноса электронов, отдают свою энергию системе АДФ-АТФ, в результате чего энергия света трансформируется в энергию макроэргических связей АТФ.

    Субстратное фосфорилирование – образование АТФ непосредственно на молекуле субстрата. Протекает в анаэробных условиях на стадиях превращения 1,3-дифосфоглицериновой кислоты в 3-фосфоглицериновую кислоту и фосфоэнолпировиноградной кислоты в пировиноградную кислоту (в процессе гликолиза).

    Окислительное фосфорилирование – образование АТФ одновременно с процессом переноса протонов и электронов по дыхательной цепи ферментов. На каждые 2 атома водорода, поступившие в дыхательную цепь, синтезируются 3 молекулы АТФ. Окислительное фосфорилирование осуществляется аэробными и факультативно-анаэробными микроорганизмами.

    Ведущая роль энергии на метаболическом пути зависит от процесса, суть которого - фосфорилирование окислительное. Питательные вещества окисляются, образуя при этом энергию, которую организм запасает в митохондриях клеток как АТФ. У всякой формы земной жизни собственные излюбленные питательные вещества, однако АТФ - соединение универсальное, а энергия, которую производит фосфорилирование окислительное, запасается, чтобы использовать её для метаболических процессов.

    Бактерии

    Более трёх с половиной миллиардов лет назад появились первые живые организмы на нашей планете. Жизнь зародилась на Земле благодаря тому, что появившиеся бактерии - прокариотические организмы (не имеющие ядра) разделились на два вида по принципу дыхания и питания. По дыханию - на аэробные и анаэробные, а по питанию - на гетеротрофные и автотрофные прокариоты. Это напоминание вряд ли будет излишним, потому что фосфорилирование окислительное невозможно объяснить без базовых понятий.

    Итак, прокариоты по отношению к кислороду (физиологическая классификация) делятся на аэробные микроорганизмы, которым свободный кислород безразличен, и аэробные, жизнедеятельность которых полностью зависит от его наличия. Именно они и осуществляют фосфорилирование окислительное, находясь в среде, насыщенной свободным кислородом. Это наиболее широко распространённый метаболический путь с высокой энергетической эффективностью сравнительно с анаэробным брожением.

    Митохондрии

    Ещё одно базовое понятие: Это энергетическая батарея клетки. Расположены митохондрии в цитоплазме и их там невероятное количество - в мускулах человека или в его печени, например, клетки содержат до полутора тысяч митохондрий (как раз там, где происходит наиболее интенсивный метаболизм). И когда окислительное фосфорилирование происходит в "дело рук" митохондрий, они же и хранят, и распределяют энергию.

    Даже от деления клеток митохондрии не зависят, они очень подвижны, свободно перемещаются в цитоплазме, когда это им нужно. У них есть собственная ДНК, а потому они и рождаются, и умирают самостоятельно. Тем не менее, жизнь клетки от них целиком и полностью зависит, без митохондрий она не функционирует, то есть - жизнь поистине невозможна. Жиры, углеводы, белки окисляются, образуя в результате атомы и электроны водорода - восстановительные эквиваленты, которые и следуют далее по дыхательной цепи. Вот так происходит окислительное фосфорилирование, механизм его, казалось бы, прост.

    Не так уж просто

    Энергия, произведённая митохондриями, превращается в другую, которая является энергией электрохимического градиента сугубо для протонов, которые находятся на внутренней мембране митохондрий. Именно эта энергия необходима для синтеза АТФ. И именно это и есть окислительное фосфорилирование. Биохимия - наука довольно молодая, лишь в середине девятнадцатого века были обнаружены в клетках гранулы митохондрий, а сам процесс получения энергии был описан гораздо позже. Было отслежено, как триозы, образовавшиеся посредством гликолиза (а главное - пировиноградная кислота), производят дальнейшее окисление в митохондриях.

    Триозы используют энергию расщепления, от чего выделяется СО 2 , потребляется кислород и синтезирует огромное количество АТФ (аденозинтрифосфорная кислота, а что это такое - особенно хорошо знают люди, увлекающиеся бодибилдингом). Все вышеописанные процессы тесно связаны с окислительными циклами, а также дыхательной цепью, переносящей электроны. Таким образом окислительное фосфорилирование происходит в клетках, синтезируя для них "топливо" - молекулы АТФ.

    Окислительные циклы и дыхательная цепь

    В окислительном цикле трикарбоновые кислоты освобождают электроны, которые начинают своё путешествие по электронотранспортной цепи: сначала на молекулы коферментов, здесь НАД - главное (никотинамид адениндинуклеотид), и далее происходит перенос электронов в ЭТЦ (электротранспортная цепь), пока они не соединятся с молекулярным кислородом и не образуют молекулу воды. Окислительное фосфорилирование, механизм которого вкратце описан выше, переносится на другое место действия. Это - белковые комплексы, встроенные во внутреннюю мембрану митохондрий.

    Именно здесь происходит кульминация - превращение энергии через последовательность окисления и восстановление элементов. Здесь интересны три основные точки электротранспортной цепи, где происходит окислительное фосфорилирование. Биохимия очень глубоко и внимательно рассматривает этот процесс. Возможно, отсюда когда-нибудь родится новое лекарство от старения. Итак, в трёх точках этой цепи из фосфата и АДФ (аденозиндифосфат - который состоит из рибозы, аденина и двух порций фосфорной кислоты) образуется АТФ. Именно поэтому процесс получил такое название.

    Клеточное дыхание

    Клеточное (иначе - тканевое) дыхание и окислительное фосфорилирование - этапы одного и того же процесса в совокупности. Используется воздух в каждой клетке тканей и органов, где продукты расщепления (жиры, углеводы, белки) расщепляются, а при этой реакции образуется энергия, запасаемая в виде Обычное лёгочное дыхание отличается от тканевого тем, что в организм поступает кислород и выводится из него углекислый газ.

    Организм всегда деятелен, энергия его расходуется на движение и на рост, на самовоспроизведение, на раздражимость и на многие другие процессы. Именно для этого и происходит окислительное фосфорилирование в митохондриях. можно разделить на три уровня: окислительное образование АТФ из пировиноградной кислоты, а также аминокислот и жирных кислот; ацетильные остатки разрушаются посредством трикарбоновых кислот, после чего освобождаются две молекулы углекислого газа и четыре пары атомов водорода; электроны и протоны переносятся к молекулярному кислороду.

    Дополнительные механизмы

    Дыхание на клеточном уровне обеспечивает образование и пополнение АДФ непосредственно в клетках. Хотя пополниться организм может и другим путём. Для этого существуют и при необходимости включаются дополнительные механизмы, хотя и не столь эффективные.

    Это системы, в которых происходит бескислородный распад углеводов - гликогенолиза и гликолиза. Это уже не окислительное фосфорилирование, реакции несколько другие. Но клеточное дыхание не может прекратиться, поскольку в его процессе образуются очень нужные молекулы важнейших соединений, используемые для самых разных биосинтезов.

    Формы энергии

    Когда переносятся электроны в митохондриальной мембране, где происходит окислительное фосфорилирование, дыхательная цепь из каждого своего комплекса направляет высвободившуюся энергию на перемещение протонов сквозь мембрану, то есть из матрикса в пространство между мембранами. Тогда образуется разность потенциалов. Протоны положительно заряжены и находятся в межмембранном пространстве, а отрицательно заряженные действуют из матрикса митохондрий.

    Когда достигается определённая разность потенциалов, белковый комплекс возвращает протоны обратно в матрикс, превращая полученную энергию в совершенно другую, где сопрягаются окислительные процессы с синтетическим - фосфорилированием АДФ. Во всё время окисления субстатов и перекачки протонов через мембрану митохондрии не прекращается синтез АТФ, то есть - фосфорилирование окислительное.

    Два вида

    Окислительное и субстратное фосфорилирование коренным образом отличаются друг от друга. Согласно представлениям современности, формы жизни наиболее древние умели пользоваться только реакциями субстратного фосфорилирования. Для этого использовались существующие во внешней среде органические соединения по двум каналам - как источник энергии и как источник углерода. Однако такие соединения в окружающей среде постепенно иссякли, и уже появившиеся организмы начали приспосабливаться, искать новые источники энергии и новые источники углерода.

    Так они научились использовать энергию света и углекислоты. Но пока это не произошло, организмы освобождали энергию из окислительных процессов брожения и так же хранили её в молекулах АТФ. Это и получило название фосфорилирования субстратного, когда используется способ катализирования растворимыми ферментами. Сбраживаемый субстрат образует восстановитель, который переносит электроны на нужный эндогенный акцептор - ацетон, ацетальгид, пируват и тому подобные, или же высвобождается Н 2 - газообразный водород.

    Сравнительная характеристика

    Сравнительно с брожением окислительное фосфорилирование имеет гораздо больший энергетический выход. Гликолиз даёт суммарный выход АТФ в две молекулы, а по ходу процесса синтезируется от тридцати до тридцати шести. Происходит перемещение электронов к соединениям-акцепторам от соединений-доноров посредством окислительных и восстановительных реакций, образующих энергию, запасаемую как АТФ.

    Эукариоты осуществляют эти реакции комплексами белков, которые локализованы внутри митохондриальной мембраны клетки, а прокариоты работают снаружи - в её межмембранном пространстве. Как раз этот комплекс связанных белков и составляет ЭТЦ (электронотранспортную цепь). Эукариоты в своём составе имеют только пять белковых комплексов, а прокариоты - множество, и все они работают с самыми разными донорами электронов и их акцепторами.

    Сопряжения и разобщения

    Процессом окисления создаётся электрохимический потенциал, а с процессом фосфорилирования этот потенциал используется. Это значит, что обеспечено сопряжение, иначе - связывание процессов фосфорилирования и окисления. Отсюда и название - окислительное фосфорилирование. Электрохимический потенциал, необходимый для сопряжения, создают три комплекса дыхательной цепи - первый, третий и четвёртый, которые называются пунктами сопряжения.

    Если внутренняя мембрана митохондрии повреждена или увеличилась её проницаемость от деятельности разобщителей, это непременно вызовет исчезновение или уменьшение электрохимического потенциала, а следом наступит разобщение процессов фосфорилирования и окисления, то есть - прекращение синтеза АТФ. Именно явление, когда исчезает электрохимический потенциал, называется разобщением фосфорилирования и дыхания.

    Разобщители

    Состояние, когда окисление субстратов продолжается, а фосфорилирование не происходит (то есть, АТФ не образуется из Ф и АДФ), - это разобщение фосфорилирования и окисления. Такое случается, когда в процесс вмешиваются разобщители. Что они из себя представляют и к каким результатам стремятся? Допустим, синтез АТФ сильно снижен, то есть в меньшем количестве синтезируется, а дыхательная цепь при этом функционирует. Что происходит с энергией? Она выделяется как тепло. Все ощущают такое во время болезни с повышенной температурой тела.

    Температурите? Значит, поработали разобщители. Например, антибиотики. Это слабые кислоты, которые растворяются в жирах. Проникая в межмембранное пространство клетки, они диффундируют в матрикс, утягивая за собой связанные протоны. Разобщительным действием, например, обладают гормоны, выделяемые щитовидной железой, которые содержат йод (трийодтиронин и тироксин). Если щитовидная железа гиперфункционирует, состояние больных ужасное: им недостаёт энергии АТФ, они потребляют очень много пищи, поскольку организм требует для окисления много субстратов, но в весе теряют, поскольку основная часть получаемой энергии уходит в виде тепла.

    Оксидазный путь использования кислорода в клетке

    Причины и последствия повреждений митохондрий

    Метаболические и гомеостатические функции митохондрий

    Локализации ферментов митохондрий

    1). Наружная мембрана содержит: а). элонгазы, ферменты удлиняющие молекулы насыщенных жирных кислот; б). кинуренингидроксилазу; в). моноаминооксидазу (маркер) и др.

    2). Межмембранное пространство содержит: а). аденилатциклазу; б). нуклеозиддифосфаткиназы.

    3). Внутренняя мембрана содержит: а). ферменты цепи окислительного фосфорилирования, из них цитохромоксидаза - маркер; б). СДГ в). β-оксибутират ДГ; г). карнитинацилтрансферазу.

    4). Матрикс содержит: а). ферменты ЦТК; б). ферменты β-окисления жирных кислот; в). аминотрансферазы АСТ, АЛТ; г). глутамат ДГ д). фосфоенолпируваткарбоксилазу е). пируват ДГ.

    В клетке содержится от сотни до тысячи митохондрий, их размер 2-3 мкм в длину и 1 мкм в ширину.

    В митохондриях происходит: синтез АТФ и теплопродукция в реакция окислительного фосфорилирования; β-окисления жирных кислот; реакции ЦТК, через ЦТК протекают некоторые реакции глюконеогенеза, переаминирования, дезаминирования, липогенеза и синтеза гема, осуществляется интеграция белкового, липидного и углеводного обмена.

    Повреждение внутренней мембраны митохондрий химическими и физическими факторами приводит к нарушению процесса синтеза АТФ, торможению анаболических реакций, межмембранного транспорта и всех видов обмена веществ.

    - окислительное фосфорилирование

    Оксидазный путь использования кислорода состоит из процессов окисления и фосфорилирования, которые между собой сопряжены. В нем участвует около 40 различных белков. Оксидазный путь потребляет 90% О 2 , является основным источником АТФ в аэробных клетках.

    Окислительным фосфорилированием называют синтез АТФ из АДФ и Н 3 РО 4 за счет энергии переноса электронов по ЦПЭ. При окислении выделяется 220 кДж/моль свободной энергии. На синтез 3 АТФ расходуется: 30,5*3=91,5 кДж/моль. В виде тепла выделяется: 220-91,5=128,5 кДж/моль. КПД = 40%.НАДН 2 + ½О 2 → НАД + + Н 2 О + 220 кДж/мольАДФ + Н 3 РО 4 + 30,5 кДж/моль = АТФ + Н 2 О1). Цепь окисления (дыхательная цепь) состоит из 4 белковых комплексов, которые определенным образом встроены во внутреннюю мембрану митохондрий и небольших подвижных молекул убихинона и цитохрома С, которые циркулируют в липидном слое мембраны между белковыми комплексами.Комплекс I – НАДН 2 дегидрогеназный комплекс самый большой из дыхательных ферментных комплексов – имеет молекулярную массу свыше 800КДа, состоит из более 22 полипептидных цепей, в качестве коферментов содержит ФМН и 5 железо-серных (Fe 2 S 2 и Fe 4 S 4) белков. Комплекс II – СДГ . В качестве коферментов содержит ФАД и железо-серный белок.Комплекс III – Комплекс b-c 1 (фермент QH 2 ДГ) , имеет молекулярную массу 500КДа, состоит из 8 полипептидных цепей, и вероятно существует в виде димера. Каждый мономер содержит 3 гема, связанных с цитохромами b 562 , b 566 , с 1 , и железо-серный белок.Комплекс IV – Цитохромоксидазный комплекс имеет молекулярную массу 300КДа, состоит из 8 полипептидных цепей, существует в виде димера. Каждый мономер содержит 2 цитохрома (а и а 3) и 2 атома меди.Коэнзим Q (убихинон). Липид, радикал которого у млекопитающих образован 10 изопреноидными единицами (Q 10). Убихинон переносит по 2Н + и 2е - . убихинон ↔ семихинон ↔ гидрохинонЦитохром с . Периферический водорастворимый мембранный белок с массой 12,5КДа, содержит 1 полипептидную цепь из 100 АК, и молекулу гема.Молекулярные соотношения между компонентами дыхательной цепи отличаются в разных тканях. Например, в миокарде, на 1 молекулу НАДН 2 дегидрогеназного комплекса приходиться 3 молекулы комплекса b-c 1 , 7 молекул цитохромоксидазного комплекса, 9 молекул цитохрома С и 50 молекул убихинона.2). Фосфорилирование осуществляется АТФ-синтетазой (Н + -АТФ-аза) - интегральным белком внутренней мембраны митохондрий. АТФ-синтаза состоит из 2 белковых комплексов, обозначаемых как F 0 и F 1 . Гидрофобный комплекс F 0 погружён в мембрану.