Войти
Территория кровельщика
  • Откровение Иоанна Богослова
  • Божественная литургия текст с пояснениями
  • Есть ли предназначенные к погибели
  • Отче наш, Иже еси на Небесех!
  • Предопределение и свободная воля
  • : Религиозно-философские взгляды Льва Толстого
  • Калькулятор онлайн.Решение показательных уравнений. Решение линейных уравнений с примерами Способы решения квадратных уравнений

    Калькулятор онлайн.Решение показательных уравнений. Решение линейных уравнений с примерами Способы решения квадратных уравнений

    Алгоритм нахождения данных точек оговаривался уже неоднократно, кратко повторюсь:

    1. Находим производную функции.

    2. Находим нули производной (приравниваем производную к нулю и решаем уравнение).

    3. Далее строим числовую ось, на ней отмечаем найденные точки и определяем знаки производной на полученных интервалах. *Это делается путём подстановки произвольных значений из интервалов в производную.

    Если вы совсем не знакомы со свойствами производной для исследования функций, то обязательно изучите статью « ». Также повторите таблицу производных и правила дифференцирования (имеются в этой же статье). Рассмотрим задачи:

    77431. Найдите точку максимума функции у = х 3 –5х 2 +7х–5.

    Найдём производную функции:

    Найдем нули производной:

    3х 2 – 10х + 7 = 0

    у(0) " = 3∙0 2 – 10∙0 + 7 = 7 > 0

    у(2) " = 3∙2 2 – 10∙2 + 7 = – 1< 0

    у(3) " = 3∙3 2 – 10∙3 + 7 = 4 > 0

    В точке х = 1 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

    Ответ: 1

    77432. Найдите точку минимума функции у = х 3 +5х 2 +7х–5.

    Найдём производную функции:

    Найдем нули производной:

    3х 2 + 10х + 7 = 0

    Решая квадратное уравнение получим:

    Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

    у( –3 ) " = 3∙(–3) 2 + 10∙(–3) + 7 = 4 > 0

    у( –2 ) "= 3∙(–2) 2 + 10∙(–2) + 7 = –1 < 0

    у(0 ) "= 3∙0 2 – 10∙0 + 7 = 7 > 0


    В точке х = –1 производная меняет свой знак с отрицательного на положительный, значит это есть искомая точка минимума.

    Ответ: –1

    77435. Найдите точку максимума функции у = 7+12х–х 3

    Найдём производную функции:

    Найдем нули производной:

    12 – 3х 2 = 0

    х 2 = 4

    Решая уравнение получим:

    *Это точки возможного максимума (минимума) функции.

    Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

    у( –3 ) "= 12 – 3∙(–3) 2 = –15 < 0

    у(0 ) "= 12 – 3∙0 2 = 12 > 0

    у( 3 ) "= 12 – 3∙3 2 = –15 < 0

    В точке х = 2 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

    Ответ: 2

    *Для этой же функции точкой минимума является точка х = – 2.

    77439. Найдите точку максимума функции у = 9х 2 – х 3 .

    Найдём производную функции:

    Найдем нули производной:

    18х –3х 2 = 0

    3х(6 – х) = 0

    Решая уравнение получим:

    Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

    у( –1 ) "= 18 (–1) –3 (–1) 2 = –21< 0

    у(1 ) "= 18∙1 –3∙1 2 = 15 > 0

    у(7 ) "= 18∙7 –3∙7 2 = –1< 0

    В точке х = 6 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

    Ответ: 6

    *Для этой же функции точкой минимума является точка х = 0.

    77443. Найдите точку максимума функции у = (х 3 /3)–9х–7.

    Найдём производную функции:

    Найдем нули производной:

    х 2 – 9 = 0

    х 2 = 9

    Решая уравнение получим:

    Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

    у( –4 ) "= (–4) 2 – 9 > 0

    у(0 ) "= 0 2 – 9 < 0

    у(4 ) "= 4 2 – 9 > 0

    В точке х = – 3 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

    Ответ: – 3

    Уравнение с одним неизвестным, которое после раскрытия скобок и приведения подобных членов принимает вид

    aх + b = 0 , где a и b произвольные числа, называется линейным уравнением с одним неизвестным. Cегодня разберёмся, как эти линейные уравнения решать.

    Например, все уравнения:

    2х + 3= 7 – 0,5х; 0,3х = 0; x/2 + 3 = 1/2 (х – 2) - линейные.

    Значение неизвестного, обращающее уравнение в верное равенство называется решением или корнем уравнения .

    Например, если в уравнении 3х + 7 = 13 вместо неизвестного х подставить число 2 , то получим верное равенство 3· 2 +7 = 13. Значит, значение х = 2 есть решение или корень уравнения.

    А значение х = 3 не обращает уравнение 3х + 7 = 13 в верное равенство, так как 3· 2 +7 ≠ 13. Значит, значение х = 3 не является решением или корнем уравнения.

    Решение любых линейных уравнений сводится к решению уравнений вида

    aх + b = 0.

    Перенесем свободный член из левой части уравнения в правую, изменив при этом знак перед b на противоположный, получим

    Если a ≠ 0, то х = ‒ b/a .

    Пример 1. Решите уравнение 3х + 2 =11.

    Перенесем 2 из левой части уравнения в правую, изменив при этом знак перед 2 на противоположный, получим
    3х = 11 – 2.

    Выполним вычитание, тогда
    3х = 9.

    Чтобы найти х надо разделить произведение на известный множитель, то есть
    х = 9: 3.

    Значит, значение х = 3 является решением или корнем уравнения.

    Ответ: х = 3 .

    Если а = 0 и b = 0 , то получим уравнение 0х = 0. Это уравнение имеет бесконечно много решений, так как при умножении любого числа на 0 мы получаем 0,но b тоже равно 0. Решением этого уравнения является любое число.

    Пример 2. Решите уравнение 5(х – 3) + 2 = 3 (х – 4) + 2х ‒ 1.

    Раскроем скобки:
    5х – 15 + 2 = 3х – 12 + 2х ‒ 1.


    5х – 3х ‒ 2х = – 12 ‒ 1 + 15 ‒ 2.

    Приведем подобные члены:
    0х = 0.

    Ответ: х - любое число .

    Если а = 0 и b ≠ 0 , то получим уравнение 0х = - b. Это уравнение решений не имеет, так как при умножении любого числа на 0 мы получаем 0, но b ≠ 0 .

    Пример 3. Решите уравнение х + 8 = х + 5.

    Сгруппируем в левой части члены, содержащие неизвестные, а в правой ‒ свободные члены:
    х – х = 5 ‒ 8.

    Приведем подобные члены:
    0х = ‒ 3.

    Ответ: нет решений.

    На рисунке 1 изображена схема решения линейного уравнения

    Составим общую схему решения уравнений с одной переменной. Рассмотрим решение примера 4.

    Пример 4. Пусть надо решить уравнение

    1) Умножим все члены уравнения на наименьшее общее кратное знаменателей, равное 12.

    2) После сокращения получим
    4 (х – 4) + 3·2 (х + 1) ‒ 12 = 6·5 (х – 3) + 24х – 2 (11х + 43)

    3) Чтобы отделить члены, содержащие неизвестные и свободные члены, раскроем скобки:
    4х – 16 + 6х + 6 – 12 = 30х – 90 + 24х – 22х – 86 .

    4) Сгруппируем в одной части члены, содержащие неизвестные, а в другой – свободные члены:
    4х + 6х – 30х – 24х + 22х = ‒ 90 – 86 + 16 – 6 + 12.

    5) Приведем подобные члены:
    ‒ 22х = ‒ 154.

    6) Разделим на – 22 , Получим
    х = 7.

    Как видим, корень уравнения равен семи.

    Вообще такие уравнения можно решать по следующей схеме :

    а) привести уравнение к целому виду;

    б) раскрыть скобки;

    в) сгруппировать члены, содержащие неизвестное, в одной части уравнения, а свободные члены ‒ в другой;

    г) привести подобные члены;

    д) решить уравнение вида aх = b,которое получили после приведения подобных членов.

    Однако эта схема не обязательна для всякого уравнения. При решении многих более простых уравнений приходится начинать не с первого, а со второго (Пример. 2 ), третьего (Пример. 1, 3 ) и даже с пятого этапа, как в примере 5.

    Пример 5. Решите уравнение 2х = 1/4.

    Находим неизвестное х = 1/4: 2,
    х = 1/8
    .

    Рассмотрим решение некоторых линейных уравнений, встречающихся на основном государственном экзамене.

    Пример 6. Решите уравнение 2 (х + 3) = 5 – 6х.

    2х + 6 = 5 – 6х

    2х + 6х = 5 – 6

    Ответ: ‒ 0, 125

    Пример 7. Решите уравнение – 6 (5 – 3х) = 8х – 7.

    – 30 + 18х = 8х – 7

    18х – 8х = – 7 +30

    Ответ: 2,3

    Пример 8. Решите уравнение

    3(3х – 4) = 4 · 7х + 24

    9х – 12 = 28х + 24

    9х – 28х = 24 + 12

    Пример 9. Найдите f(6), если f (x + 2) = 3 7-х

    Решение

    Так как надо найти f(6), а нам известно f (x + 2),
    то х + 2 = 6.

    Решаем линейное уравнение х + 2 = 6,
    получаем х = 6 – 2, х = 4.

    Если х = 4, тогда
    f(6) = 3 7-4 = 3 3 = 27

    Ответ: 27.

    Если у Вас остались вопросы, есть желание разобраться с решением уравнений более основательно, записывайтесь на мои уроки в РАСПИСАНИИ . Буду рада Вам помочь!

    Также TutorOnline советует посмотреть новый видеоурок от нашего репетитора Ольги Александровны, который поможет разобраться как с линейными уравнениями, так и с другими.

    сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    Состоит в том, что бетон, армируемый прочными стальными каркасами, является высокопрочным строительным материалом и не подвержен многочисленным воздействиям окружающей среды, благодаря чему конструкция фундамента опоры ВЛ способна удерживать стальные и железобетонные опоры ЛЭП без угрозы их опрокидывания в течение не одного десятка лет. Долговечность, стойкость к нагрузкам и прочность - основные преимущества применения изделий железобетонные фундаменты МФ2х2.7-0 малозаглубленные в энергетическом строительстве.


    Железобетонные фундаменты МФ2х2.7-0 малозаглубленные изготавливаются из тяжелого бетона классом по прочности на сжатие не ниже В30, марка - от М300. Марка бетона по морозостойкости - не ниже F150, по водонепроницаемости - W4 - W6. Цемент и инертные, применяемые для изготовления бетона, должны удовлетворять требованиям СНиП I-В.3-62 и ТП4-68. Наибольший размер зерен в структуре бетона не должен превышать 20-40 мм. Контроль прочности бетона фундаментов опор в соответствии с ГОСТ 10180-67 «Бетон тяжелый. Методы определения прочности» и ГОСТ 10181-62 «Бетон тяжелый. Методы определения подвижности и жесткости бетонной смеси».


    В качестве арматуры фундаменты МФ2х2.7-0 малозаглубленные применяются: стрежневая горячекатаная арматурная сталь класса А-I, стержневая горячекатаная арматурная сталь периодического профиля класса А-III, стержневая арматурная сталь периодического профиля класса А-IV и обыкновенная арматурная проволока класса В1. Для монтажных петель применяется только стержневая горячекатаная арматура класса А-I из углеродистой спокойной стали.


    Перед фундаментами опор ЛЭП для энергетического строительства стоит ответственная задача - много лет сохранять устойчивость и прочность опор ЛЭП в разных климатических условиях, в любое время года и в любую погоду. Поэтому к фундаментам опор предъявляются очень высокие требования. Перед отправкой заказчику, фундаменты опор МФ2х2.7-0 малозаглубленные проходят проверку по различным параметрам, например, таких как степень устойчивости, прочность, долговечность и износостойкость, сопротивляемость отрицательным температурам и атмосферным воздействиям. Перед сваркой детали стыков должны быть очищены от ржавчины. Железобетонные фундаменты с толщиной защитного споя бетона менее 30 мм, а также фундаменты, устанавливаемые в агрессивных грунтах, должны быть защищены гидроизоляцией.


    Во время эксплуатации за фундаменты МФ2х2.7-0 малозаглубленные подлежат тщательному надзору, особенно в первые годы работы ВЛ. Одним из самых серьезных дефектов сооружения фундаментов, трудноустранимых в условиях эксплуатации, является нарушение технологических норм при их изготовлении: применение некачественного или плохо промытого гравия, нарушение пропорций при составлении бетонной смеси и т.д. Не менее серьезным дефектом является послойное бетонирование фундаментов, когда отдельные элементы одного и того же фундамента бетонируются в разное время без предварительной подготовки поверхности. При этом не происходит схватывания бетона одного элемента фундамента с другим и может произойти разрушение фундамента при внешних нагрузках, которые значительно меньше расчетных.


    При изготовлении железобетонных фундаментов опор также иногда нарушаются нормы: используется недоброкачественный бетон, закладывается арматура не тех размеров, которые предусмотрены проектом. В процессе сооружения линий электропередач на сборных или свайных железобетонных фундаментах возможно появление серьезных дефектов, которые не допускает энергетическое строительство. К таким дефектам относятся установка сломанных железобетонных фундаментов, недостаточное их заглубление в грунте (особенно при установке опор на склонах холмов и оврагов), нетщательная трамбовка при засыпке, установка сборных фундаментов меньших размеров и др. К дефектам установки относится неправильный монтаж железобетонных фундаментов, при котором отдельные сборные фундаменты, предназначенные в качестве основания металлической опоры, имеют различные вертикальные отметки или сдвиг отдельных фундаментов в плане. При неправильной разгрузке фундаменты МФ2х2.7-0 малозаглубленные могут быть испорчены, может произойти скол бетона и обнажение арматуры. В процессе приемки особое внимание следует обращать на соответствие анкерных болтов и их гаек проектным размерам.


    В условиях эксплуатации железобетонные фундаменты МФ2х2.7-0 малозаглубленные повреждаются как от воздействий внешней среды, так и от больших внешних нагрузок. Арматура фундаментов, имеющих пористую структуру бетона, повреждается от агрессивного воздействия грунтовых вод. Трещины, образующиеся на поверхности фундаментов, при воздействии эксплуатационных знакопеременных нагрузок, а также ветра, влаги и низкой температуры, расширяются, что в конечном итоге приводит к разрушению бетона и обнажению арматуры. На территориях, расположенных вблизи химических заводов, быстро разрушаются анкерные болты и верхняя часть металлических подножников.


    Поломка фундамента опор также может произойти в результате несоосности его со стойками, что служит причиной появления больших изгибающих моментов. Подобная поломка может произойти и при размыве основания фундамента грунтовыми водами и отклонении его от вертикального положения.


    В процессе приемки фундаменты МФ2х2.7-0 малозаглубленные проверяются их соответствие проекту, глубина заложения, качество бетона, качество сварки рабочей арматуры и анкерных болтов, наличие и качество защиты от действия агрессивных вод. Производятся замер вертикальных отметок фундаментов и проверка расположения анкерных болтов по шаблону. При обнаружении каких-либо несоответствий нормам все дефекты устраняются до засыпки котлованов. Фундаменты, имеющие в верхней части сколы бетона и обнаженную арматуру, ремонтируются. Для этого устраивается бетонное обрамление толщиной 10-20 см, заглубленное ниже уровня земли на 20 - 30 см. Следует иметь в виду, что энергетическое строительство не допускает обрамление из шлакобетона, так как в шлаке имеется примесь серы, которая вызывает интенсивную коррозию арматуры и анкерных болтов. При более значительных повреждениях фундаментов (в том числе и монолитных) поврежденная часть накрывается арматурой, сваренной с арматурой основного фундамента, и после установки опалубки бетонируется.


    Состоит в том, что бетон, армируемый прочными стальными каркасами, является высокопрочным строительным материалом и не подвержен многочисленным воздействиям окружающей среды, благодаря чему конструкция фундамента опоры ВЛ способна удерживать стальные и железобетонные опоры ЛЭП без угрозы их опрокидывания в течение не одного десятка лет. Долговечность, стойкость к нагрузкам и прочность - основные преимущества применения изделий железобетонные фундаменты ФП2.7х2.7-А для металлических опор ВЛ 220 кВ одноцепные, ВЛ 330 кВ одноцепные в энергетическом строительстве.


    Железобетонные фундаменты ФП2.7х2.7-А для металлических опор ВЛ 220 кВ одноцепные, ВЛ 330 кВ одноцепные изготавливаются из тяжелого бетона классом по прочности на сжатие не ниже В30, марка - от М300. Марка бетона по морозостойкости - не ниже F150, по водонепроницаемости - W4 - W6. Цемент и инертные, применяемые для изготовления бетона, должны удовлетворять требованиям СНиП I-В.3-62 и ТП4-68. Наибольший размер зерен в структуре бетона не должен превышать 20-40 мм. Контроль прочности бетона фундаментов опор в соответствии с ГОСТ 10180-67 «Бетон тяжелый. Методы определения прочности» и ГОСТ 10181-62 «Бетон тяжелый. Методы определения подвижности и жесткости бетонной смеси».


    В качестве арматуры фундаменты ФП2.7х2.7-А для металлических опор ВЛ 220 кВ одноцепные, ВЛ 330 кВ одноцепные применяются: стрежневая горячекатаная арматурная сталь класса А-I, стержневая горячекатаная арматурная сталь периодического профиля класса А-III, стержневая арматурная сталь периодического профиля класса А-IV и обыкновенная арматурная проволока класса В1. Для монтажных петель применяется только стержневая горячекатаная арматура класса А-I из углеродистой спокойной стали.


    Перед фундаментами опор ЛЭП для энергетического строительства стоит ответственная задача - много лет сохранять устойчивость и прочность опор ЛЭП в разных климатических условиях, в любое время года и в любую погоду. Поэтому к фундаментам опор предъявляются очень высокие требования. Перед отправкой заказчику, фундаменты опор ФП2.7х2.7-А для металлических опор ВЛ 220 кВ одноцепные, ВЛ 330 кВ одноцепные проходят проверку по различным параметрам, например, таких как степень устойчивости, прочность, долговечность и износостойкость, сопротивляемость отрицательным температурам и атмосферным воздействиям. Перед сваркой детали стыков должны быть очищены от ржавчины. Железобетонные фундаменты с толщиной защитного споя бетона менее 30 мм, а также фундаменты, устанавливаемые в агрессивных грунтах, должны быть защищены гидроизоляцией.


    Во время эксплуатации за фундаменты ФП2.7х2.7-А для металлических опор ВЛ 220 кВ одноцепные, ВЛ 330 кВ одноцепные подлежат тщательному надзору, особенно в первые годы работы ВЛ. Одним из самых серьезных дефектов сооружения фундаментов, трудноустранимых в условиях эксплуатации, является нарушение технологических норм при их изготовлении: применение некачественного или плохо промытого гравия, нарушение пропорций при составлении бетонной смеси и т.д. Не менее серьезным дефектом является послойное бетонирование фундаментов, когда отдельные элементы одного и того же фундамента бетонируются в разное время без предварительной подготовки поверхности. При этом не происходит схватывания бетона одного элемента фундамента с другим и может произойти разрушение фундамента при внешних нагрузках, которые значительно меньше расчетных.


    При изготовлении железобетонных фундаментов опор также иногда нарушаются нормы: используется недоброкачественный бетон, закладывается арматура не тех размеров, которые предусмотрены проектом. В процессе сооружения линий электропередач на сборных или свайных железобетонных фундаментах возможно появление серьезных дефектов, которые не допускает энергетическое строительство. К таким дефектам относятся установка сломанных железобетонных фундаментов, недостаточное их заглубление в грунте (особенно при установке опор на склонах холмов и оврагов), нетщательная трамбовка при засыпке, установка сборных фундаментов меньших размеров и др. К дефектам установки относится неправильный монтаж железобетонных фундаментов, при котором отдельные сборные фундаменты, предназначенные в качестве основания металлической опоры, имеют различные вертикальные отметки или сдвиг отдельных фундаментов в плане. При неправильной разгрузке фундаменты ФП2.7х2.7-А для металлических опор ВЛ 220 кВ одноцепные, ВЛ 330 кВ одноцепные могут быть испорчены, может произойти скол бетона и обнажение арматуры. В процессе приемки особое внимание следует обращать на соответствие анкерных болтов и их гаек проектным размерам.


    В условиях эксплуатации железобетонные фундаменты ФП2.7х2.7-А для металлических опор ВЛ 220 кВ одноцепные, ВЛ 330 кВ одноцепные повреждаются как от воздействий внешней среды, так и от больших внешних нагрузок. Арматура фундаментов, имеющих пористую структуру бетона, повреждается от агрессивного воздействия грунтовых вод. Трещины, образующиеся на поверхности фундаментов, при воздействии эксплуатационных знакопеременных нагрузок, а также ветра, влаги и низкой температуры, расширяются, что в конечном итоге приводит к разрушению бетона и обнажению арматуры. На территориях, расположенных вблизи химических заводов, быстро разрушаются анкерные болты и верхняя часть металлических подножников.


    Поломка фундамента опор также может произойти в результате несоосности его со стойками, что служит причиной появления больших изгибающих моментов. Подобная поломка может произойти и при размыве основания фундамента грунтовыми водами и отклонении его от вертикального положения.


    В процессе приемки фундаменты ФП2.7х2.7-А для металлических опор ВЛ 220 кВ одноцепные, ВЛ 330 кВ одноцепные проверяются их соответствие проекту, глубина заложения, качество бетона, качество сварки рабочей арматуры и анкерных болтов, наличие и качество защиты от действия агрессивных вод. Производятся замер вертикальных отметок фундаментов и проверка расположения анкерных болтов по шаблону. При обнаружении каких-либо несоответствий нормам все дефекты устраняются до засыпки котлованов. Фундаменты, имеющие в верхней части сколы бетона и обнаженную арматуру, ремонтируются. Для этого устраивается бетонное обрамление толщиной 10-20 см, заглубленное ниже уровня земли на 20 - 30 см. Следует иметь в виду, что энергетическое строительство не допускает обрамление из шлакобетона, так как в шлаке имеется примесь серы, которая вызывает интенсивную коррозию арматуры и анкерных болтов. При более значительных повреждениях фундаментов (в том числе и монолитных) поврежденная часть накрывается арматурой, сваренной с арматурой основного фундамента, и после установки опалубки бетонируется.


    Кабель ЛСВ 2-7 16х0,12 относится к типу ленточных марок, которые успешно применяются для внутри- и межприборного монтажа электротехнических и радиоэлектронных приспособлений, работающих в электросетях с постоянным 350 В током или с 250 В переменным напряжением на частотах до 50 Гц. Аппаратный монтаж производится при участии разного рода штепсельных соединителей, использования обжимки и контактных соединителей, для чего изоляция может прокалываться, при помощи пайки, а также не влияющих на изоляцию клеев и лаков. Изоляция не нарушается, если производится разделение жил по перемычке. Марка отлично выдерживает влияние синусоидальной вибрации, акустических шумов, линейного ускорения, одиночных и многократных механических ударов.

    Расшифровка маркирования ЛСВ 2-7 16х0,12:

    • Л - ленточный
    • С - серийный
    • В - изоляция из ПВХ
    Элементы конструкции кабеля ЛСВ 2-7 16х0,12
    1. Монопроволочный меднолужёный внутренний проводник
    2. Изоляция из полимерного ПВХ- пластиката
    Технические параметры кабеля ЛСВ 2-7 16х0,12
    Сертификаты и гарантии