Войти
Территория кровельщика
  • Представьте в виде степени выражения
  • Имя Диана: значение, происхождение
  • Но я верила, что произойдет чудо и мама выживет
  • Дочь сальвадора дали что показала
  • Приведение дробей к общему знаменателю
  • Самые страшные пытки в истории человечества
  • Точность измерения. Правильность измерения Что такое правильность измерений

    Точность измерения. Правильность измерения Что такое правильность измерений

    Применяемые при измерении методы отличаются используемым оборудованием, сложностью или простотой проведения измерений и, соответственно, метрологическими характеристиками полученного результата, в основном, точностью.

    Метод измерения – это совокупность способов и приемов сравнения измеряемой ФВ с её единицей в соответствии с реализованным принципом измерений.

    Принцип измерений – это физическое явление или эффект, положенный в основу измерений. Например, измерение массы на весах (использование силы тяжести)

    Результат измерений – это значение измеряемой величины, полученное путем проведения измерений.

    Погрешность результата измерений – отклонение результата измерений от истинного (действительного) значения измеряемой величины

    Точность измерений – одна из характеристик качества измерений, отражающая близость к 0 погрешности результата измерений.

    Достоверность – это характеристика качества измерений, отражающая степень доверия к их результатам и доверительную вероятность того, что истинное значение измеряемой величины находится в указанных доверительных границах.

    Сходимость результатов измерений – близость друг к другу результатов измерений одной и той же величины, проведенных в одинаковых условиях одним и тем же методом.

    Воспроизводимость – характеристика качества измерений, отражающая близость друг к другу результатов измерений, полученных в разных местах, разными методами, разными средствами, разными операторами в разное время, но приведенных к одним и тем же условиям (температура, давление, влажность и уровень действующих помех – ЭМ-помехи, ЭС-помехи, оптические)

    Правильность результата измерений – характеристика качества измерений, отражающая близость к 0 систематической погрешности (погрешность, возникающая при всех измерениях величины, величина погрешности может быть установлена, а значит устранена).

    При проведении измерений предполагается:

    1.сравнение измеряемой ФВ с однородной ФВ, принятой за ед-цу (исп-ся компаратор)

    2.измерительное преобразование –преобр-ние входной величины в выходную с исп-м известной связи между этими величинами. Выходные сигналы измерит-х преобр-лей явл-ся унифиц-ми: напряжение0..10 и пост.ток 0..5мА, 4..20мА, 0..20мА

    3.масштабирование – формирование выходного сигнала однородного с входным, размер информативного пар-ра выходного сигнала пропорционален размеру информатив-го пар-ра входного сигнала (реализ-ся с помощью масштабного преобр-ля)

    Методы измерений классифицируются по различным признакам:

    Физический принцип, положенный в основе измерения (электрические, механические, магнитные, оптические измерения)

    Степень взаимодействия средства и объекта измерения – контактный и бесконтактный (измерение температуры термометров сопротивления, измерение температуры пирометров по излучению)

    Режим взаимодействия средства и объекта измерения (статический и динамический)

    Вид измерительных сигналов (аналоговый и цифровой)

    Организация сравнения измеряемой величины с мерой (метод непосредственной оценки \ отсчета – метод, при котором значение измеряемой величины определяют непосредственно по показывающему средству измерений – отличается простотой, но точность невысока. Метод сравнения с мерой – измеряемая величина сравнивается с величиной, воспроизводимой мерой – эти методы сложны в реализации, но характеризуются высокой точностью, подразделяются на дифференциальные, нулевые, замещения, совпадений)

    Дифференциальный (разностный метод) – измерительным прибором оценивается разность между измеряемой величиной и однородной величиной, имеющей известное значение. Точность метода возрастает при уменьшении разности между сравниваемыми величинами.

    Нулевой метод – частный случай дифференциального, и заключается в том, что результирующий эффект воздействия измеряемой величины и образцовой мерой на прибор сравнения доводится до 0 (измерение электрического сопротивления с помощью мостовой схемы с полным уравновешиванием моста путем регулирования номиналов его элементов).

    Метод замещения – измеряемая величина замещается мерой с известным значением величины

    Метод совпадений - измеряют разность между искомой величиной и образцовой мерой, используя совпадения отметок или периодических сигналов (при измерении перемещений, периода, частоты).

    При практическом использовании тех или иных измерении важно оценить их точность. Термин «точность измерений», т. е. степень приближения результатов измерения к некоторому действительному значению, не имеет строгого определения и используется для качественного сравнения измерительных операций. Для количественной оценки применяется понятие «погрешность измерений» (чем меньше погрешность, тем выше точность).

    Погрешностью называют отклонение результата измерений от действительного (истинного) значения измеряемой величи­ны. При этом следует иметь в виду, что истинное значение физической величины считается неизвестным и применяется в теоретических исследованиях. Действительное значение физической величины устанавливается экспериментальным путем в предположении, что результат эксперимента (измерения) в максимальной степени приближается к истинному значению. Оценка погрешности измерении - одно из важных мероприятий по обеспечению единства измерении.

    Погрешности измерений приводятся обычно в технической документации на средства измерений или в нормативных документах. Правда, если учесть, что погрешность зависит еще и от условий, в которых проводится само измерение, от экспериментальной ошибки методики и субъективных особенностей человека в случаях, где он непосредственно участвует в измерениях, то можно говорить о нескольких составляющих погрешности измерений, либо о суммарной погрешности.

    Количество факторов, влияющих на точность измерения, достаточно велико, и любая классификация погрешностей измерения (рис.2) в известной мере условна, так как различные погрешности в зависимости от условий измерительного процесса проявляются в разных группах.

    2.2 Виды погрешностей

    Погрешность измерения - это отклонение результата измерения Х от истинного Х и значения измеряемой величины. При определении погрешностей измерения вместо истинного значения физической величины Х и, реально используют ее действительное значение Х д.

    В зависимости от формы выражения различают абсолютную, относительную и приведенную погрешности измерения.

    Абсолютная погрешность определяется как разность Δ"= Х - Х и или Δ = Х - Х д, а относительная - как отношение δ = ± Δ / Х д ·100%.

    Приведенная погрешность γ= ±Δ/Χ Ν ·100%, где Χ N - нормирующее значение величины, в качестве которого используют диапазон измерений прибора, верхний предел измерений и т.д.

    В качестве данного истинного значения при многократных измерениях параметра выступает среднее арифметическое значение :

    = i ,

    где Xi - результат i -го измерения, - n число измерений.

    Величина , полученная в одной серии измерений, является случайным приближением к Х и. Для оценки ее возможных отклонений от Х и определяют оценку среднего квадратического отклонения среднего арифметического:

    S()=

    Для оценки рассеяния отдельных результатов измерения Xi относительно среднего арифметического определяют выборочное среднее квадратическое отклонение:

    σ =

    Данные формулы применяют при условии постоянства из­меряемой величины в процессе измерения.

    Эти формулы соответствуют центральной предельной теореме теории вероятностей, согласно которой среднее арифметическое из ряда измерений всегда имеет меньшую погрешность, чем погрешность каждого определенного измерения:

    S()=σ /

    Эта формула отражает фундаментальный закон теории погрешностей. Из него следует, что если необходимо повысить точность результата (при исключенной систематической погрешности) в 2 раза, то число измерений нужно увеличить в 4 раза; если точность требуется увеличить в 3 раза, то число измерений

    увеличивают в 9 раз и т.д.

    Нужно четко разграничивать применение величин S и σ: первая используется при оценке погрешностей окончательного результата, а вторая - при оценке погрешности метода измерения. Наиболее вероятная погрешность отдельного измерения Δ в 0,67S.

    В зависимости от характера проявления, причин возникновения и возможностей устранения различают систематическую и случайную погрешности измерений, а также грубые погрешнос­ти (промахи).

    Систематическая погрешность остается постоянной или закономерно изменяется при повторных измерениях одного и того же параметра.

    Случайная погрешность изменяется в тех же условиях измерения случайным образом.

    Грубые погрешности (промахи) возникают из-за ошибочных действий оператора, неисправности средств измерения или резких изменений условий измерений. Как правило, грубые погрешности выявляются в результате обработки результатов измерений с помощью специальных критериев.

    Случайная и систематическая составляющие погрешности из­мерения проявляются одновременно, так что их общая погрешность равна сумме погрешностей при их независимости.

    Значение случайной погрешности заранее неизвестно, она возникает из-за множества не уточненных факторов. Исключить из результатов случайные погрешности нельзя, но их влияние может быть уменьшено путем обработки результатов измерений.

    Для практических целей весьма важно уметь правильно сформулировать требования к точности измерений. Например, если за допустимую погрешность изготовления принять Δ = 3σ, то, повышая требования к точности (например, до Δ = σ), при сохранении технологии изготовления увеличиваем вероятность брака.

    Как правило, считают, что систематические погрешности мо­гут быть обнаружены и исключены. Однако в реальных условиях полностью исключить эти погрешности невозможно. Всегда остаются какие-то неисключенные остатки, которые нужно учитывать, чтобы оценить их границы. Это и будет систематическая погрешность измерения.

    Другими словами, в принципе систематическая погрешность тоже случайна и указанное деление обусловлено лишь установившимися традициями обработки и представления результатов измерения.

    В отличие от случайной погрешности, выявленной в целом вне зависимости от ее источников, систематическая погрешность рассматривается по составляющим в зависимости от источников ее возникновения. Различают субъективную, методическую и инструментальную составляющие погрешности.

    Субъективная составляющая погрешности связана с индивидуальными особенностями оператора. Как правило, эта погреш­ность возникает из-за ошибок в отсчете показаний (примерно 0,1 деления шкалы) и неверных навыков оператора. В основном же систематическая погрешность возникает из-за методической и инструментальной составляющих.

    Методическая составляющая погрешности обусловлена несовершенством метода измерения, приемами использования средств измерения, некорректностью расчетных формул и округления результатов.

    Инструментальная составляющая возникает из-за собственной погрешности средств измерения, определяемой классом точности, влиянием средств измерения на результат и ограниченной разрешающей способности средств измерения.

    Целесообразность разделения систематической погрешности на методическую и инструментальную составляющие объясняется следующим:

    Для повышения точности измерений можно выделить лимитирующие факторы, а, следовательно, принять решение об усовершенствовании методики или выборе более точных средств измерения;

    Появляется возможность определить составляющую общей погрешности, увеличивающейся со временем или под влиянием внешних факторов, а, следовательно, целенаправленно осуществлять периодические поверки и аттестации;

    Инструментальная составляющая может быть оценена до разработки методики, а потенциальные точностные возможности выбранного метода определит только методическая составляющая.

    2.3 Показатели качества измерений

    Единство измерений, однако, не может быть обеспечено лишь совпадением погрешностей. При проведении измерений также важно знать показатели качества измерений. Под качеством измерений понимают совокупность свойств, обусловливающих получение результатов с требуемыми точностными характеристиками, в необходимом виде и в установленные сроки.

    Качество измерений характеризуется такими показателями, как точность, правильность и достоверность. Эти показатели должны определяться по оценкам, к которым предъявляются требования состоятельности, несмещенности и эффективности.

    Истинное значение измеряемой величины отличается от среднего арифметического значения результатов наблюдений на величину систематической погрешности Δ с, т. е. X = -Δ с. Если систематическая составляющая исключена, то X = .

    Однако из-за ограниченного числа наблюдений величину точно определить также невозможно. Можно лишь оценить ее значение, указать с определенной вероятностью границы интервала, в котором оно находится. Оценкучисловой характеристики закона распределения Х, изображаемую точкой на числовой оси, называют точечной. В отличие от числовых характеристик оценки являются случайными величинами, причем их значение зависит от числа наблюденийn. Состоятельной называют оценку, которая при n→∞ сводится по вероятности к оцениваемой величине.

    Несмещенной называется оценка, математическое ожидание которой равно оцениваемой величине.

    Эффективной называют такую оценку, которая имеет наименьшую дисперсию σ 2 = min.

    Перечисленным требованиям удовлетворяет среднеарифметическое значение результатовn наблюдений.

    Таким образом, результат отдельного измерения является случайной величиной. Тогда точность измерений - это близость результатов измерений к истинному значению измеряемой величины. Если систематические составляющие погрешности исключены, то точность результата измерений характеризуется степенью рассеяния его значения, т. е. дисперсией. Как показано выше, дисперсия среднеарифметическогоσ в n раз меньше дисперсии отдельного результата наблюдения.

    На рисунке 3 показана плотность распределения отдельного и суммарного результата измерения. Более узкая заштрихованная площадь относится к плотности вероятности распределения среднего значения. Правильность измерений определяется близостью к нулю систематической погрешности.

    Достоверность измерений определяется степенью доверия к результату и характеризуется вероятностью того, что истинное значение измеряемой величины лежит в указанных окрестностях действительного. Эти вероятности называют доверительными, а границы (окрестности) - доверительными границами. Другими словами, достоверность измерения - это близость к нулю неисключенной систематической погрешности.

    Доверительным интервалом с границами (или доверительными границами) от – Δ д до + Δ д называют интервал значений случайной погрешности, который с заданной доверительной вероятностью Р д, накрывает истинное значение измеряемой величины.

    Р д { - Δ д ≤,Х ≤ + Δ д }.

    При малом числе измерений (n 20) и использовании нормального закона не представляется возможным определить доверительный интервал, так как нормальный закон распределения описывает поведение случайной погрешности в принципе при бесконечно большом числе измерений.

    Поэтому, при малом числе измерений используют распределение Стьюдента или t - распределение (предложенное английским статистиком Госсетом, публиковавшимся под псевдонимом «студент»), которое обеспечивает возможность определения доверительных интервалов при ограниченном числе измерений. Границы доверительного интервала при этом определяются по формуле:

    Δ д = t·S(),

    где t - коэффициент распределения Стьюдента, зависящий от задаваемой доверительной вероятности Р д и числа измерений n.

    При увеличении числа наблюдений n распределение Стьюдента быстро приближается к нормальному и совпадает с ним уже при n ≥30.

    Следует отметить, что результаты измерений, не обладающие достоверностью, т. е. степенью уверенности в их правильности, не представляют ценности. К примеру, датчик измерительной схемы может иметь весьма высокие метрологические характеристики, но влияние погрешностей от его установки, внешних условий, методов регистрации и обработки сигналов приведет к большой конечной погрешности измерений.

    Наряду с такими показателями, как точность, достоверность и правильность, качество измерительных операций характеризуется также сходимостью и воспроизводимостью результатов. Эти показатели наиболее распространены при оценке качества испытаний и характеризуют их точность.

    Очевидно, что два испытания одного и того же объекта одинаковым методом не дают идентичных результатов. Объективной мерой их могут служить статистически обоснованные оценки ожидаемой близости результатов двух или более испытаний, полученных при строгом соблюдении их методики. В качестве таких статистических оценок согласованности результатов испы­таний принимаются сходимость и воспроизводимость.

    Сходимость - это близость результатов двух испытаний, полученных одним методом, на идентичных установках, в одной лаборатории. Воспроизводимость отличается от сходимости тем, что оба результата должны быть получены в разных лабораториях.

    Правильность измерения

    "...Правильность измерения (trueness of measurement): степень близости среднего значения, полученного на основании большой серии измерений, к истинному (принятому опорному) значению..."

    Источник:

    "ЛАБОРАТОРНАЯ МЕДИЦИНА. ТРЕБОВАНИЯ К ЛАБОРАТОРИЯМ РЕФЕРЕНТНЫХ ИЗМЕРЕНИЙ. ГОСТ Р ИСО 15195-2006 "

    (утв. Приказом Ростехрегулирования от 27.12.2006 N 349-ст)

    "...Правильность измерения (trueness of measurement): степень близости среднего значения, полученного на основании большой серии результатов измерений, к истинному значению..."

    Источник:

    " Лаборатории медицинские. Частные требования к качеству и компетентности. ГОСТ Р ИСО 15189-2009 "

    (утв. Приказом Ростехрегулирования от 09.12.2009 N 629-ст)


    Официальная терминология . Академик.ру . 2012 .

    Смотреть что такое "Правильность измерения" в других словарях:

      измерения - 3.8.37 измерения: Нахождение значения физической величины опытным путем с помощью технических средств, имеющих нормированные метрологические свойства. Источник: СТО Газпром 2 2.3 141 2007: Энергохозяйство ОАО "Газпром". Термины и… …

      Измерения в условиях стандартной геометрии (по схеме, представленной в приложении 4 , черт. 3) - 3.5.1. Измерения в условиях стандартной геометрии (по схеме, представленной в приложении 4 , черт. 3) 3.5.1.1. Проверяют правильность настройки порогов привязки усилителя к уровню шумов и фронту входного сигнала. В соответствии с методикой,… … Словарь-справочник терминов нормативно-технической документации

      Правильность социологической информации - одна из характеристик качества социологической информации. Под П. с. п. понимается отсутствие систематических ошибок, связанных с инструментом исследования. Оценка П. с. и. осуществляется путем выдвижения гипотез о возможных систематических… … Социологический справочник

      ГОСТ Р 53573-2009: Вибрация. Измерения вибрации, передаваемой машиной через упругие изоляторы. Общие требования - Терминология ГОСТ Р 53573 2009: Вибрация. Измерения вибрации, передаваемой машиной через упругие изоляторы. Общие требования оригинал документа: 3.1 область контакта (contact area): Область, через которую вибрация передается от машины в… … Словарь-справочник терминов нормативно-технической документации

      ГОСТ Р 51318.16.1.4-2008: Совместимость технических средств электромагнитная. Требования к аппаратуре для измерения параметров индустриальных радиопомех и помехоустойчивости и методы измерений. Часть 1 - 4. Аппаратура для измерения параметров индустриальных радиопомех и помехоустойчивости. Устройства для измерения излучаемых радиопомех и испытаний на устойчивость к излучаемым радиопомехам - Терминология ГОСТ Р 51318.16.1.4 2008: Совместимость технических средств электромагнитная. Требования к аппаратуре для измерения параметров индустриальных радиопомех и помехоустойчивости и методы измерений. Часть 1 4. Аппаратура для измерения… … Словарь-справочник терминов нормативно-технической документации

      ГОСТ Р 54365-2011: Лесоматериалы круглые. Метод измерения объема по верхнему диаметру и сбегу - Терминология ГОСТ Р 54365 2011: Лесоматериалы круглые. Метод измерения объема по верхнему диаметру и сбегу оригинал документа: 3.2 бревно: Круглый сортимент различного назначения кроме тонкомерной рудничной стойки, жердей и кольев. Примечание… … Словарь-справочник терминов нормативно-технической документации

      ГОСТ 29115-91: Блоки и устройства детектирования гамма-излучения спектрометрические на основе полупроводниковых детекторов. Методы измерения основных параметров - Терминология ГОСТ 29115 91: Блоки и устройства детектирования гамма излучения спектрометрические на основе полупроводниковых детекторов. Методы измерения основных параметров оригинал документа: 3.5.2. Измерение БД с детектором типа «колодец»… … Словарь-справочник терминов нормативно-технической документации

      опорный метод измерения объема - 3.11 опорный метод измерения объема: Относительно точный метод измерения объема, основанный на учете сбега каждого бревна, применяемый при выборочных измерениях для установления погрешности рабочих методов и корректировки их систематической… … Словарь-справочник терминов нормативно-технической документации

      Часы прибор для измерения времени - Содержание: 1) Исторический очерк развития часовых механизмов: а) солнечные Ч., b) водяные Ч., с) песочные Ч., d) колесные Ч. 2) Общие сведения. 3) Описание астрономических Ч. 4.) Маятник, его компенсация. 5) Конструкции спусков Ч. 6) Хронометры … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

      условия - (см. раздел 1) d) Может ли машина представлять опасности при создании или потреблении определенных материалов? Нет

    Точность измерений

    помощью так называемых измерительных приборов постоянно возрастает с ростом науки (Измерения; Единицы мер - абсолютные системы). Она зависит теперь не только от тщательного приготовления приборов, но еще от нахождения новых принципов измерений. Так, напр., цвета тонких пластинок - явление интерференции света - позволяют измерить линейные величины, гораздо меньшие, чем самые точные винтовые микрометры. Болометр измеряет тепловые изменения во множестве случаев гораздо меньшие, чем те, которые доступны термомультипликатору. Можно сделать, однако, общее замечание, что новые методы измерения гораздо чаще ведут к увеличению точности определений весьма малых изменений той или другой величины, чем к увеличению точности определения этой целой величины.


    Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. - С.-Пб.: Брокгауз-Ефрон . 1890-1907 .

    Смотреть что такое "Точность измерений" в других словарях:

      Точность измерений - Качество измерений, отражающее близость их результатов к истинному значению измеряемой величины Источник: ГОСТ 24846 81: Грунты. Методы измерения деформаций оснований зданий и сооружений …

      Характеристика качества измерений, отражающая степень близости результатов измерений к истинному значению измеряемой величины. Чем меньше результат измерения отклоняется от истинного значения величины, т. е. чем меньше его погрешность, тем выше Т … Физическая энциклопедия

      точность измерений - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN accuracy of measurements …

      точность измерений - поверка. поверять. прибор врет. см. показывать время … Идеографический словарь русского языка

      ГОСТ Р ЕН 306-2011: Теплообменники. Измерения и точность измерений при определении мощности - Терминология ГОСТ Р ЕН 306 2011: Теплообменники. Измерения и точность измерений при определении мощности: 3.31 величина воздействия: Величина, не являющаяся предметом измерения, но способная влиять на получаемый результат. Определения термина из… … Словарь-справочник терминов нормативно-технической документации

      точность результата измерений - точность измерений Одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения. Примечание. Считают, что чем меньше погрешность измерения, тем больше его точность. [РМГ 29 99] Тематики метрология,… … Справочник технического переводчика

      точность - 3.1.1 точность (accuracy): Степень близости результата измерений к принятому опорному значению. Примечание Термин «точность», когда он относится к серии результатов измерений, включает сочетание случайных составляющих и общей систематической… … Словарь-справочник терминов нормативно-технической документации

      Средства измерений степень совпадения показаний измерительного прибора с истинным значением измеряемой величины. Чем меньше разница, тем больше точность прибора. Точность эталона или меры характеризуется погрешностью или степенью… … Википедия

      точность - Степень близости результата измерений к принятому опорному значению. Примечание. Термин «точность», когда он относится к серии результатов измерений (испытаний), включает сочетание случайных составляющих и общей систематической… … Справочник технического переводчика

      точность средства измерений - точность Характеристика качества средства измерений, отражающая близость его погрешности к нулю. Примечание. Считается, что чем меньше погрешность, тем точнее средство измерений. [РМГ 29 99] Тематики метрология, основные понятия Синонимы точность … Справочник технического переводчика

    Книги

    • Физические основы измерений в технолог. пищевой и химической промышленности. Учебное пособие , Попов Геннадий Васильевич , Земсков Юрий Петрович , Квашнин Борис Николаевич Серия: Учебники для вузов. Специальная литература Издатель: Лань ,
    • Физические основы измерений в технологиях пищевой и химической промышленности. Учебное пособие , Попов Геннадий Васильевич , Земсков Юрий Петрович , Квашнин Борис Николаевич , В настоящем пособии изложены краткие теоретические сведения о закономерностях измерений, измерительных системах, элементах физической картины мира, а также о принципах измерений на основе… Серия: Учебники для ВУЗов. Специальная литература Издатель:

    1. Предмет и задачи метрологии

    Под метрологией подразумевается наука об измерениях, о существующих средствах и методах, помогающих соблюсти принцип их единства, а также о способах достижения требуемой точности.

    Происхождение самого термина «метрология» возводят к двум греческим словам: metron, что переводится как «мера», и logos – «учение». Бурное развитие метрологии пришлось на конец ХХ в. Оно неразрывно связано с развитием новых технологий. До этого метрология была лишь описательным научным предметом. Таким образом, можно сказать, что метрология изучает:

    1) методы и средства для учета продукции по следующим показателям: длине, массе, объему, расходу и мощности;

    2) измерения физических величин и технических параметров, а также свойств и состава веществ;

    3) измерения для контроля и регулирования технологических процессов.

    Выделяют несколько основных направлений метрологии:

    1) общая теория измерений;

    2) системы единиц физических величин;

    3) методы и средства измерений;

    4) методы определения точности измерений;

    5) основы обеспечения единства измерений, а также основы единообразия средств измерения;

    6) эталоны и образцовые средства измерений;

    7) методы передачи размеров единиц от образцов средств измерения и от эталонов рабочим средствам измерения.

    Следует различать также объекты метрологии: 1) единицы измерения величин;

    2) средства измерений;

    3) методики, используемые для выполнения измерений и т. д.

    Метрология включает в себя: во-первых, общие правила, нормы и требования, во-вторых, вопросы, нуждающиеся в государственном регламентировании и контроле. И здесь речь идет о:

    1) физических величинах, их единицах, а также об их измерениях;

    2) принципах и методах измерений и о средствах измерительной техники;

    3) погрешностях средств измерений, методах и средствах обработки результатов измерений с целью исключения погрешностей;

    4) обеспечении единства измерений, эталонах, образцах;

    5) государственной метрологической службе;

    6) методике поверочных схем;

    7) рабочих средствах измерений.

    В связи с этим задачами метрологии становятся: усовершенствование эталонов, разработка новых методов точных измерений, обеспечение единства и необходимой точности измерений.

    2 Классификация измерений

    Классификация средств измерений может проводиться по следующим критериям.

    1. По характеристике точности измерения делятся на равноточные и неравноточные.

    Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

    Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

    2. По количеству измерений измерения делятся на однократные и многократные.

    3. По типу изменения величины измерения делятся на статические и динамические.

    Статические измерения – это измерения постоянной, неизменной физической величины.

    Динамические измерения – это измерения изменяющейся, непостоянной физической величины.

    4. По предназначению измерения делятся на технические и метрологические.

    Технические измерения – это измерения, выполняемые техническими средствами измерений.

    Метрологические измерения – это измерения, выполняемые с использованием эталонов.

    5. По способу представления результата измерения делятся на абсолютные и относительные.

    Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы. Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей).

    6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.

    Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

    Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений.

    Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений. Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

    3. Основные характеристики измерений

    Выделяют следующие основные характеристики измерений:

    1) метод, которым проводятся измерения;

    2) принцип измерений;

    3) погрешность измерений;

    4) точность измерений;

    5) правильность измерений;

    6) достоверность измерений.

    Метод измерений – это способ или комплекс способов, посредством которых производится измерение данной величины, т. е. сравнение измеряемой величины с ее мерой согласно принятому принципу измерения.

    Существует несколько критериев классификации методов измерений.

    1. По способам получения искомого значения измеряемой величины выделяют:

    1) прямой метод (осуществляется при помощи прямых, непосредственных измерений);

    2) косвенный метод.

    2. По приемам измерения выделяют:

    1) контактный метод измерения;

    2) бесконтактный метод измерения.

    Контактный метод измерения основан на непосредственном контакте какой-либо части измерительного прибора с измеряемым объектом.

    При бесконтактном методе измерения измерительный прибор не контактирует непосредственно с измеряемым объектом.

    3. По приемам сравнения величины с ее мерой выделяют:

    1) метод непосредственной оценки;

    2) метод сравнения с ее единицей.

    Метод непосредственной оценки основан на применении измерительного прибора, показывающего значение измеряемой величины.

    Метод сравнения с мерой основан на сравнении объекта измерения с его мерой.

    Принцип измерений – это некое физическое явление или их комплекс, на которых базируется измерение.

    Погрешность измерения – это разность между результатом измерения величины и настоящим (действительным) значением этой величины.

    Точность измерений – это характеристика, выражающая степень соответствия результатов измерения настоящему значению измеряемой величины.

    Правильность измерения – это качественная характеристика измерения, которая определяется тем, насколько близка к нулю величина постоянной или фиксировано изменяющейся при многократных измерениях погрешности (систематическая погрешность).

    Достоверность измерений – это характеристика, определяющая степень доверия к полученным результатам измерений.

    4 Понятие о физической величине Значение систем физических единиц

    Физическая величина является понятием как минимум двух наук: физики и метрологии. По определению физическая величина представляет собой некое свойство объекта, процесса, общее для целого ряда объектов по качественным параметрам, отличающееся, однако, в количественном отношении (индивидуальная для каждого объекта). Есть целый ряд классификаций, созданных по различным признакам. Основными из них является деления на:

    1) активные и пассивные физические величины – при делении по отношению к сигналам измерительной информации. Причем первые (активные) в данном случае представляют собой величины, которые без использования вспомогательных источников энергии имеют вероятность быть преобразованными в сигнал измерительной информации. А вторые (пассивные) представляют собой такие величины, для измерения которых нужно использовать вспомогательные источники энергии, создающие сигнал измерительной информации;

    2) аддитивные (или экстенсивные) и неаддитивные (или интенсивные) физические величины – при делении по признаку аддитивности. Считается, что первые (аддитивные) величины измеряются по частям, кроме того, их можно точно воспроизводить с помощью многозначной меры, основанной на суммировании размеров отдельных мер. А вторые (неаддитивные) величины прямо не измеряются, так как они преобразуются в непосредственное измерение величины или измерение путем косвенных измерений. В 1791 г. Национальным собранием Франции была принята первая в истории система единиц физических величин. Она представляла собой метрическую систему мер. В нее входили: единицы длин, площадей, объемов, вместимостей и веса. А в их основу были положены две общеизвестные ныне единицы: метр и килограмм.

    В основу своей методики ученый заложил три основные независимые друг от друга величины: массу, длину, время. А в качестве основных единиц измерения данных величин математик взял миллиграмм, миллиметр и секунду, поскольку все остальные единицы измерения можно с легкостью вычислить с помощью минимальных. Так, на современном этапе развития выделяют следующие основные системы единиц физических величин:

    1) система СГС (1881 г.);

    2) система МКГСС (конец XIX в.);

    3) система МКСА (1901 г.)

    5. Международная система единиц

    Решениями Генеральной конференции по мерам и весам приняты такие определения основных единиц измерения физических величин:

    1) метр считается длинной пути, который проходит свет в вакууме за 1/299 792 458 долю секунды;

    2) килограмм считается приравненным к существующему международному прототипу килограмма;

    3) секунда равна 919 2631 770 периодам излучения, соответствующего тому переходу, который происходит между двумя так называемыми сверхтонкими уровнями основного состояния атома Cs133;

    4) ампер считается мерой той силы неизменяющегося тока, вызывающего на каждом участке проводника длиной 1 м силу взаимодействия при условии прохождения по двум прямолинейным параллельным проводникам, обладающим такими показателями, как ничтожно малая площадь кругового сечения и бесконечная длина, а также расположение на расстоянии в 1 м друг от друга в условиях вакуума;

    5) кельвин равен 1/273,16 части термодинамической температуры, так называемой тройной точки воды;

    6) моль равен количеству вещества системы, в которую входит такое же количество структурных элементов, что и в атомы в С 12 массой 0,01 2 кг.

    Кроме того, Международная система единиц содержит две достаточно важные дополнительные единицы, необходимые для измерения плоского и телесного углов. Так, единица плоского угла – это радиан, или сокращенно рад, представляющий собой угол между двух радиусов окружности, длина дуги между которыми равняется радиусу окружности. Если речь идет о градусах, то радиан равен 57°17" 48"". А стерадиан, или ср, принимаемый за единицу телесного угла, представляет собой, соответственно, телесный угол, расположение вершины которого фиксируется в центре сферы, а площадь, вырезаемая данным углом на поверхности сферы, равна площади квадрата, сторона которого равна длине радиуса сферы. Другие дополнительные единицы СИ используются для формирования единиц угловой скорости, а также углового ускорения и т. д. Радиан и стерадиан используются для теоретических построений и расчетов, поскольку большая часть значимых для практики значений углов в радианах выражаются трансцендентными числами. К внесистемным единицам относятся следующие:

    1) за логарифмическую единицу принята десятая часть бела, децибел (дБ);

    2) диоптрия – сила света для оптических приборов;

    3) реактивная мощность – Вар (ВА);

    4) астрономическая единица (а. е.) – 149,6 млн км;

    5) световой год, под которым понимается такое расстояние, которое луч света проходит за 1 год;

    6) вместимость – литр;

    7) площадь – гектар (га).

    Существуют также единицы, вообще не входящие в СИ. Это в первую очередь такие единицы, как градус и минута. Все остальные единицы считаются производными, которые согласно Международной системе единиц образуются с помощью самых простейших уравнений с использованием величин, числовые коэффициенты которых приравнены к единице. Если в уравнении числовой коэффициент равен единице, производная единица называется когерентной.

    6. Физические величины и измерения

    Объектом измерения для метрологии, как правило, являются физические величины. Физические величины используется для характеристики различных объектов, явлений и процессов. Разделяют основные и производные от основных величины. Семь основных и две дополнительных физических величины установлены в Международной системе единиц. Это длина, масса, время, термодинамическая температура, количество вещества, сила света и сила электрического тока, дополнительные единицы – это радиан и стерадиан. У физических величин есть качественные и количественные характеристики.

    Качественное различие физических величин отражается в их размерности. Обозначение размерности установлено международным стандартом ИСО, им является символ dim*.

    Количественная характеристика объекта измерения – это его размер, полученный в результате измерения. Самый элементарный способ получить сведения о размере определенной величины объекта измерения – это сравнить его с другим объектом. Результатом такого сравнения не будет точная количественная характеристика, оно позволит лишь выяснить, какой из объектов больше (меньше) по размеру. Сравниваться могут не только два, но и большее число размеров. Если размеры объектов измерения расположить по возрастанию или по убыванию, то получится шкала порядка. Процесс сортировки и расположения размеров по возрастанию или по убыванию по шкале порядка называется ранжированием. Для удобства измерений определенные точки на шкале порядка фиксируются и называются опорными, или реперными точками. Фиксированным точкам шкалы порядка могут ставиться в соответствие цифры, которые часто называют баллами.

    У реперных шкал порядка есть существенный недостаток: неопределенная величина интервалов между фиксированными реперными точками.

    Самым оптимальным вариантом является шкала отношений. Шкалой отношений является, например, шкала температуры Кельвина. На данной шкале есть фиксированное начало отсчета – абсолютный ноль (температура, при которой прекращается тепловое движение молекул). Основное преимущество шкалы отношений состоит в том, что с ее помощью можно определить, во сколько раз один размер больше или меньше другого.

    Размер объекта измерения может быть представлен в разных видах. Это зависит от того, на какие интервалы разбита шкала, с помощью которой измеряется данный размер.

    Например, время движения может быть представлено в следующих видах: T = 1 ч = 60 мин = 3600 с. Это значения измеряемой величины. 1, 60, 3600 – это числовые значения данной величины.

    7. Эталоны и образцовые средства измерений

    Все вопросы, связанные охранением, применением и созданием эталонов, а также контроль за их состоянием, решаются по единым правилам, установленным ГОСТом «ГСИ. Эталоны единиц физических величин. Основные положения» и ГОСТом «ГСИ. Эталоны единиц физических величин. Порядок разработки и утверждения, регистрации, хранения и применения». Классифицируются эталоны по принципу подчиненности. По этому параметру эталоны бывают первичные и вторичные.

    Вторичный эталон воспроизводит единицу при особенных условиях, заменяя при этих условиях первичный эталон. Он создается и утверждается для целей обеспечения минимального износа государственного эталона. Вторичные эталоны могут делиться по признаку назначения. Так, выделяют:

    1) эталоны-копии, предназначенные для передачи размеров единиц рабочим эталонам;

    2) эталоны-сравнения, предназначенных для проверки невредимости государственного эталона, а также для целей его заменяя при условии его порчи или утраты;

    3) эталоны-свидетели, предназначенные для ели-чения эталонов, которые по ряду различных причин не подлежат непосредственному сличению друг с другом;

    4) рабочие эталоны, которые воспроизводят единицу от вторичных эталонов и служат для передачи размера эталону более низкого разряда. Вторичные эталоны создают, утверждают, хранят и применяют министерства и ведомства. \

    Существует также понятие «эталон единицы», под которым подразумевают одно средство или комплекс средств измерений, направленных на воспроизведение и хранение единицы для последующей трансляции ее размера нижестоящим средствам измерений, выполненных по особой спецификации и официально утвержденных в установленном порядке в качестве эталона. Есть два способа воспроизведения единиц по признаку зависимости от технико-экономических требований:

    1) централизованный способ – с помощью единого для целой страны или же группы стран государственного эталона. Централизованно воспроизводятся все основные единицы и большая часть производных;

    2) децентрализованный способ воспроизведения – применим к производным единицам, сведения о размере которых не передаются непосредственным сравнением с эталоном.

    Существует также понятие «образцовые средства измерений», которые используются для закономерной трансляции размеров единиц в процессе поверки средств измерения и используются лишь в подразделениях метрологической службы. Разряд образцового средства измерения определяется в ходе измерений метрологической аттестации одним из органов Государственного комитета по стандартам.