Войти
Территория кровельщика
  • Сон открытая калитка во двор
  • Магия чисел Тень во сне к чему
  • К чему снится железная дорога: толкования образов рельс и поездов
  • К чему снятся мошки: сонники и народные поверья К чему снятся мошки в большом количестве
  • Сонник пыль в доме. Толкование сна: пыль. Сонник современной женщины
  • Что значит видеть во сне рану женщине и мужчине?
  • Между целостной системой и системной целостностью. Понятие системы

    Между целостной системой и системной целостностью. Понятие системы

    Проблема целостности с давних времен привлекает внимание философов. Аристотель, вероятно, первым обратил внимание на тот факт, что целое «больше» суммы частей, и попытался показать относительную независимость целого как сущности от изменений, происходящих в его частях. Дальнейшее развитие концепции целостности связано с именами Лейбница, Канта и особенно Гегеля.

    Резкое повышение интереса к проблеме целостности в рамках кибернетики и общей теории систем обусловлено развитием функционального подхода и концепции открытых систем. Анализу понятия целостности в философии и специальных науках, выявлению его роли в научном познании посвящен ряд монографий советских философов.

    Целостность обычно рассматривают с точки зрения ее отношения к частям, при этом стремятся раскрыть неразрывность и взаимообусловленность частей и целого. Рассмотрим целостность в ее отношении к внешнему окружению, к среде, т.е. в функциональном аспекте. Такую целостность называют функциональной . С этой точки зрения она выступает, прежде всего, как фактор, обусловливающий индивидуализацию предмета, вещи. Благодаря целостным свойствам, предмет есть то, что он есть. Вне целостных свойств, вся совокупность внешних отношений и связей предмета разрушается. Исчезает, следовательно, и сам предмет. Целостные свойства объектов реальной действительности в их функциональном аспекте делают эти объекты принципиально познаваемыми.

    В общей теории систем понятие функциональной целостности с самого начала кладется в основу теории. Оно играет здесь фундаментальную роль наряду с принципом иерархичности. Анализируя понятие системы, В. Н. Садовский рассматривает целостность и иерархичность как равноправные компоненты и ставит их рядом с точки зрения основополагающего значения для теории систем. Он пишет: «Исходными при метатеоретическом анализе понятия «система» являются принципы целостности и иерархичности, согласно которым утверждается первичность системы как целого над ее элементами и принципиальная иерархическая организация любой системы» , Тем самым указывается, что между принципом целостности и принципом иерархичности существует органическая связь.

    Иерархическое строение систем в методологическом контексте выступает как следствие функционального характера целостности. Действительно, анализируя природу иерархии в каждом конкретном случае, можно убедиться, что целостность как характеристика связи системы со средой изначально выступает в форме иерархообразующего фактора.

    С этой точки зрения относительно обособленный объект, рассматриваемый в рамках более широкой системы «объект-среда», может трактоваться как уровень иерархии в этой последней системе.



    Вторым уровнем является окружающая среда. Соответственно этому систему «объект–среда» можно изобразить двумя концентрическими окружностями.

    Если часть среды, в которой функционирует система (а точнее, ее ближайшее окружение), в свою очередь может быть описана как целостность, то получаем уже трехуровневую иерархическую структуру, которую можно изобразить соответственно тремя концентрическими окружностями. И так далее.

    Функциональная целостность обусловливает относительную самостоятельность, автономность отдельных подсистем в рамках иерархической структуры. Эта автономность в известном смысле неизбежна, как неизбежно то, что всякий объект, раз он существует, обладает целостными характеристиками, некоторым собственным поведением.

    Впрочем, сразу же надо оговориться. Эти целостные характеристики и это собственное поведение можно приписывать объекту лишь в рамках внешнего, феноменологического описания. При более строгом, сущностном подходе так называемые собственные характеристики объекта обнаруживают гораздо более сложную природу, выступая как синтетический результат отношения между объектом и средой, как структурные свойства этого отношения.

    Таким образом, автономность, целостность, поведенческие характеристики какого-либо уровня в иерархической системе невозможно понять, изучая структуру только этого уровня.

    Функции уровня имеют межуровневую природу, выступая как структурные свойства всей иерархической системы, и с этой точки зрения представляют собой основу для проведения структурного анализа системы. Одновременно структура системы может рассматриваться как результат функционального синтеза, т.е. синтеза целостных свойств элементов и уровней системы.

    Рассмотрим более детально проблему порождения целостных свойств в системе. В конструктивном плане целостность всегда возникает в процессе формирования системы.

    Усиление факторов, обусловливающих функциональную целостность элементов системы, целесообразно лишь при условии, что одновременно происходит усиление межуровневых отношений и связей. При этом растет степень выраженности иерархической структуры системы. Если усиления межуровневых отношений и связей не происходит, то факторы функциональной целостности системы ослабляются и система может распасться.

    Одна из наиболее распространенных причин усиления факторов функциональной целостности в биологической и социально-экономической системах – специализация элементов. В этом случае целостность всей системы обеспечивается существованием четких связей между элементами, специализация которых делает их совершенно необходимыми друг для друга в интересах системы.

    Возникновение иерархической структуры экономики в результате общественного разделения труда может служить примером, который опровергает широко распространенное мнение, будто иерархические структуры образуются исключительно как следствие ограниченных возможностей элементов системы по переработке информации. Конечно, нельзя отрицать того, что информационный фактор играет определенную роль при формировании иерархических структур, но он, по-видимому, не является решающим. Опыт практического конструирования систем управления производством показывает, что попытки заменить первичные регуляторы одним централизованным регулятором и достаточно производительной (по объему перерабатываемой информации) ЭВМ обычно кончаются неудачей.

    Отмечая недостаточность информационного подхода для объяснения природы иерархических структур, В. Л. Хартон пишет: «Применением управляющих устройств с любым быстродействием любая сложная иерархическая система, по-видимому, не может быть преобразована в простую, одноуровневую. Минимальное число уровней определяется разнообразием алгоритмов управления, разной степенью взаимосвязи этих алгоритмов». При этом разнообразие алгоритмов управления связывается с разнообразием, разнокачественностью элементов системы, что порождает разнообразие, разнохарактерность связей между элементами. В организмах и производственных системах разнокачественность элементов как раз и появляется в результате их функциональной дифференциации и специализаций. Сам процесс построения информационных систем переработки данных для принятия решений использует функциональную целостность как фундаментальный иерархообразующий фактор. Таким образом, понятие целостности и иерархичности неразрывно связаны между собой.

    Целостность– основной общий признак, который присутствует практически во всех определениях и теоретических моделях понятия «система». Этот признак стремятся явно или хотя бы неявно выразить во всех определениях понятия системы.

    Определение 1.35 . Под целостностью системы понимается внутреннее единство и принципиальная не сводимость свойств системы к сумме свойств составляющих ее элементов.

    Однако средства, которыми пытаются выразить целостность, бывают различными и не всегда однозначными.

    В простейшем случае считается, что наличие связей и отношений между элементами системы как раз и выражает ее целостность, так что никаких специальных средств, кроме задания этих отношений, не требуется. При этом признак целостности не вводится в определение системы. Это характерно для определений, сложившихся вне системного подхода. Понятно, что не всякие отношения придают множеству элементов целостность. Поэтому выделяются специальные отношения, которые называются системообразующими.

    Для выделения системы в сложном объекте выбираются такие отношения, которые существенны в данной задаче. В качестве признаков, которые характеризуют именно целостность систем, используют такие, как единство цели, функциональное назначение, определенные функции, наличие окружающей среды, с которой система взаимодействует как целое. Подчеркнем, что все эти признаки, не являются всеобщими.

    Из свойства целостности вытекают следующие два положения:

    · система по отношению к окружающей среде будет восприниматься как целое (целостное) и в системе должно преобладать взаимодействие внутренних связей над внешними связями, причем возмущающему воздействию среды должна противостоять интеграция элементов среды;

    · в рамках данного целого определяются свойства и функции элементов системы, и всякая декомпозиция системы может осуществляться до минимальных элементов системы, которые еще сохраняют свойство целостности системы.

    Закономерность целостности проявляется в системе в возникновении новых интегративных качеств, не свойственных образующим ее компонентам. Чтобы глубже понять закономерность целостности, необходимо рассмотреть две ее стороны:

    · свойства системы (целого) не являются суммой свойств элементов или частей (несводимость целого к простой сумме частей);

    · свойства системы (целого) зависят от свойств элементов, частей (изменение в одной части вызывает изменение во всех остальных частях и во всей системе).

    Существенным проявлением закономерности целостности являются новые взаимоотношения системы как целого со средой, отличные от взаимодействия с ней отдельных элементов.

    Свойство целостности связано с целью, для выполнения которой предназначена система.

    Весьма актуальным является оценка степени целостности системы при переходе из одного состояния в другое. В связи с этим возникает двойственное отношение к закономерности целостности. Ее называют физической аддитивностью, независимостью, суммативностью , обособленностью. Свойство физической аддитивности проявляется у системы, как бы распавшейся на независимые элементы.

    Строго говоря, любая система находится всегда между крайними точками условной шкалы:

    абсолютная целостность – абсолютная аддитивность .

    Рассматриваемый этап развития системы можно охарактеризовать степенью проявления в ней одного или другого свойства и тенденцией к его нарастанию или уменьшению.

    Для оценки этих явлений А. Холл ввел такие закономерности, как «прогрессирующая факторизация» (стремление системы к состоянию со все более независимыми элементами) и «прогрессирующая систематизация» (стремление системы к уменьшению самостоятельности элементов, т. е. к большей целостности). Существуют методы введения сравнительных количественных оценок степени целостности, коэффициента использования элементов в целом с точки зрения определенной цели.

    Как правило, объединение элементов в систему осуществляется в результат формирования согласованного взаимодействия (сложения усилий) в нечто новое, обладающее интегративным качеством, которым эти элементы до объединения не обладали. Функциональная целостность системы характеризует завершенность ее внутреннего строения. Именно система выступает как нечто целое относительно окружающей среды: при возмущающем воздействии внешней среды проявляются внутренние связи между ее элементами и чем эти связи сильнее, тем устойчивее система к внешним возмущениям. Другими словами, совокупность взаимосвязанных структурных элементов образует систему только в том случае, когда отношения между элементами порождают новое особое качество целостности, называемое системным.

    Свойства системы как целого определяются не только свойствами его отдельных элементов, но и свойствами структуры системы.

    Целостность представляет собой многоаспектное явление. Одна из важнейших составляющих целостности – интегрированность обеспечивает сплоченность частей в целое, причем в результате такой сплоченности свойства частей модифицируются и проявляются как качественно иные свойства, характерные для наличной целостности и отличные от свойств отдельных элементов (в некоторых источниках используют термин «эмерджентность»). Интегрированность проявляется также в функциональной ориентированности взаимодействий элементов системы на сохранение и развитие целостности путем снятия актуальных противоречий системы.

    Существенным признаком целостностиявляется относительная обособленность системы от окружающей среды. Это свидетельствует о наличии у системы некоей внешней границы (отделяющей ее от среды), которая обусловлена функциональной отделимостью системы из среды, причем контакты со средой осуществляются избирательно, что позволяет обмениваться со средой веществом, энергией и информацией, не смешиваясь со средой и сохраняя качественную индивидуальность системы.

    Под средой понимается множество объектов вне данной системы.

    Часто выделяют ближнюю среду, которая определяется как подмножество объектов, оказывающих существенное влияние на систему и/или испытывающих ее воздействие.

    Таким образом, понятие целостности, так или иначе, входит почти во все определения системы и определяет ее свойства.

    Свойства системы можно подразделить на четыре типа.

    1. Целостные свойства системы (интегративные). Это свойства, принадлежащие рассматриваемой системе в целом, но не принадлежат ее составным частям.

    2. Нецелостные свойства системы. Это свойства, принадлежащие составным частям, но не принадлежат системе в целом.

    3. Целостно-нецелостные свойства. Это свойства, которые принадлежат как системе в целом, так и ее элементам.

    4. «Небытийные» свойства системы. Это такие свойства, которые не принадлежат ни системе в целом, ни ее элементам.

    На рис.1.17 представлена структура системы с учетом ее связей с внешней средой и элементами, обеспечивающими ее целостность.

    Целостность системы любой природы обеспечивают следующие четыре элемента: энергия, вещество, информация, знания . Они являются попарно сопряженными компонентами. Информация и знание представляют содержательную сущность системы, энергия и вещество составляют форму системы. Энергия как некое физическое поле представляет динамическую компоненту системы, а вещество, обладающее массой покоя, представляет статическую компоненту системы. Знание как системная компонента представляет структурированную или стратегическую информацию, а информация, со своей стороны, представляет актуализированное знание.

    Рис.1.17. Структура системы в общем виде

    С формальной точки зрения любая система может пониматься как некоторая математическая модель. К примеру, представление системы в виде «черного ящика» в абстрактном виде может быть определено следующим образом.

    Определение 1.36. Система в широком смысле – эквивалент понятия математичес­кой модели и задается пар множествU, Y (U – множество входов; Y – множество выходов) и отношением, формализующим связь (зависимость) между входами и выходами.

    Соединение систем также является системой и задается отно­шением. Например, последовательное соединение систем , есть отношение , такое, что существуют такие , , удовлетворяющие условиям , , где отношение, опреде­ляющее связь между и . Таким образом, можно определять сколь угодно сложные системы исходя из простых.

    Приведенное определение отражает в абстрактном виде атрибуты (свойства), присущие нашему интуитивному представлению о сис­теме.

    Имеет место определение системы, связанное с конкретизацией понятия модели, путем наделения ее некоторыми свойствами. Одним из этих свойств является целостность.

    Определение 1.37 . Система это модель – обладающая свойствами целостности, структурированности и целенаправленности.

    Дадим еще одно определение целостности.

    Определение 1.38. Целостность (единство) означает, что система отделена от внешней среды: среда может оказывать на нее действие (акцию) только через ее входы и воспринимать отклики (реакцию) на эти действия через выходы.

    Цель. Применение понятия «цель» и связанных с ней понятий целенаправленности, целеустремленности, целесообразности сдержи-ваются трудностью их однозначного толкования в конкретных условиях. Это связано с тем, что процесс целеобразования и соответствующий ему процесс обоснования целей в организованных системах очень сложен и не до конца изучен. Его исследованию большое внимание уделяется в психологии, философии, кибернетике.

    Можно дать следующее определение цели.

    Определение 1.39 . Цель – это субъективный образ не существую-щего состояния среды или объекта, который бы решил возникшую проблему.

    В практических применениях цель – это идеальное устремление, которое позволяет коллективу увидеть перспективы или реальные возможности, обеспечивающие своевременность завершения очередного этапа на пути к идеальным устремлениям.

    Связь цели и системы неоднозначна: различные системы могут быть ориентированы на одну цель; одна система может иметь и часто имеет несколько различных целей. Если расширить понятие цели, считая любое будущее состояние системы объективной целью, то можно сказать о целеустремленности природных систем.

    Примеры систем, которые реализуют определенные цели, представлены в таблице 1.5.

    Таблица 1.5

    Особый класс образуют социально-технические системы, в состав которых входят не только техника, но индивидуумы и коллективы, связанные с работой системы. Одним из самых распространенных классов таких систем есть организационные системы или организации, состоящие из групп людей, деятельность которых сознательно координируется для выполнения определенных функций или для достижения общих целей с использованием определенных технических способов или технологий. Идеологическую основу для определения цели социально-технической системы представляет система ее ценн остей. Она является объектом системного анализа на стадии выявления соответствующей действительности целей лиц, которые входят в систему, ибо официально декларированные цели могут не совпадать с соответствующей действительностью.

    Целенаправленность - требует задания некоторой цели, дости-жение которой свидетельствует о правильной работе системы.

    Как уже, указывалось выше важным свойством системы является структурированность.

    Структурированность означает, что система разделена внутри на несколько подсистем, связанных и взаимодействующих между со­бой также, как целая система взаимодействует с внешней средой.

    Среда. Среда есть окружение с которым система взаимодействует . Взаимодействующие со средой системы называют открытыми (в отличие от закрытых, которые среды не имеют).

    Средой для одной из подсистем могут служить остальные подсистемы или часть из них. Типология среды показана на рис.1.18.

    Определение 1.40 . Под средой понимается множество объектов вне данного элемента (системы), которые оказывают влияние на элемент (систему) и сами находятся под воздействием элемента (системы) .

    Среда тоже – система.

    Углубление понимания среды показывает, что среда представляется неоднородной.

    Для нее свойственны следующие характеристики:

    · некоторая совокупность организованных систем и хаотических образований. При этом организованные системы придают среде организованность, предопределенность, а хаотические образования – непредсказуемость, случайность;

    · множество факторов, воздействующих на систему. Средой являются не все объекты, которые окружают систему, а лишь имеющие отношение к ее жизнедеятельности. Либо это объекты и системы, которые попадают, что называется, в сферу «интересов систем», либо те, в сферу интересов которых попадает данная система;

    · система воздействует на среду посредством своих функций. При этом внешние функции организующее воздействуют на окружающую среду, а внутренние – на внутреннюю;

    · система использует среду в качестве источника, хранилища и средства переработки ресурсов, средств жизни. Среда пополняет систему, обеспечивает ее обновление, сферу жизни, проявление функций;

    · система постоянно меняет свои границы по отношению к средам.

    В этом проявляется ее динамизм. Она может получать или захватывать из окружающей среды элементы и присваивать их, вводить во внутреннюю среду.

    Система отделена от среды границами.

    Рис.1.18. Типология среды

    Границы системы можно определить как любые объекты, в которых не существует данный объект и которые обладают наименьшим отличием от них.

    Определение границ системы принципиально важно как для ее познания, так и управления. При этом границы системы, прежде всего, устанавливаются в пространстве. Чтобы найти границы системы и построить ее план, необходимо приложить к каждому объекту системы своеобразную линейку – системообразующий фактор. Построение пространственной модели системы с определением границ изучается специальной отраслью знания, называемой топологией систем.

    Модель системы. Под моделью системы понимается описание системы, отображающее определенную группу свойств. Углубление описания – детализация модели системы. Создание модели системы позволяет предсказывать ее поведение в определенном диапазоне условий.

    Понятия, характеризующие функционирование и развитие системы. Процессы, происходящие в системах, как правило, не удается представить в виде математических соотношений или хотя бы алгоритмов. Поэтому для того, чтобы хоть как-то охарактеризовать функционирование системы, используют специальные термины, заимствованные теорией систем из теории автоматического регулирования, биологии, философии.

    К таким понятиям относятся:

    · состояние;

    · поведение;

    · равновесие;

    · устойчивость;

    · развитие;

    · модель функционирования системы.

    Состояние. Состояние обычно характеризует мгновенную фотографию, «срез» системы, остановку в ее развитии.

    Состояние системы определяют либо:

    · через входные воздействия и выходные сигналы (результаты);

    · через макропараметры, макросвойства системы.

    К макропараметрам системы относятся: давление, скорость, ускорение – для физических систем; производительность, себестоимость продукции, прибыль – для экономических систем.

    Определение 1.41. Под состоянием системы понимается упорядоченная совокупность значений параметров внутренних и внешних, определяющих ход процессов происходящих в системе.

    Более полно состояние системы можно определить, если рассмотреть элементы (компоненты, функциональные блоки), определяющие состояние, учесть, что «входы» можно разделить на управляющие и возмущающие (неконтролируемые) и что «выходы» «выходные результаты, сигналы) зависят от элементов, управления и неконтролируемых воздействий.

    Таким образом, состояние системы – это множество существенных свойств, которыми система обладает в данный момент времени.

    Множество состояний системы может быть счетным, континуальным или конечным.

    Поведение. Если системаспособна переходить из одного состояния в другое, то говорят, что система обладает поведением.

    Определение 1.42. Поведение системы есть развернутая во времени последовательность реакций системы на внешние воздействия.

    Понятием «поведение» пользуются, когда неизвестны закономерности (правила) перехода из одного состояния в другое. Если говорят о поведении системы, то выясняют его характер, алгоритм.

    Модель функционирования системы это такая модель, которая предсказывает изменение состояния системы во времени.

    Равновесие. Понятие равновесия определяют как способность системы в отсутствии внешних возмущающих воздействий (или при постоянных воздействиях) сохранять свое состояние сколь угодно долго. Это состояние называется состоянием равновесия.

    Устойчивость. Под устойчивостью понимается способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних возмущающих воздействий. Эта способность обычно присуща системам при постоянном управляющем воздействии, если отклонения не превышают некоторого предела.

    Определение 1.43. Состояние равновесия, в которое система способна возвращаться называют устойчивым состоянием равновесия.

    Равновесие и устойчивость в экономических и организованных системах – гораздо более сложные понятия, чем в технике, и до недавнего времени ими воспользовались только для некоторого предварительного описания представления о системе. В последнее время появились попытки формализованного отображения этих процессов и в сложных организованных системах, помогающие выявлять параметры, влияющие на их протекание и взаимосвязь.

    Развитие. Это понятие помогает объяснить сложные термодинамические и информационные процессы в природе и обществе. Исследование процесса развития, соотношения развития и устойчивости, изучение механизмов, лежащих в их основе, – наиболее сложные задачи теории систем. Выделяют особый класс развивающихся систем , обладающих особыми свойствами и требующих разработки и использования специальных подходов и их моделированию.

    Приведенные выше формальные определения системы являются достаточно об­щими. Под них попадают практически все виды математических моде­лей систем: дифференциальные и разностные уравнения, регрессион­ные модели, модели массового обслуживания, конечные и стохасти­ческие автоматы, дедуктивные системы и т.д.

    Многим знакома фраза из фильма Эндрю и Лоуренса Вачовски: "Матрица - это система. Она и есть наш враг". Однако стоит разобраться в понятиях, терминах, а также в возможностях и свойствах системы. Так ли она страшна, как ее представляют во многих фильмах и литературных произведениях? О характеристиках и свойствах системы и примерах их проявления пойдет речь в статье.

    Значение термина

    Слово «система» греческого происхождения (σύστημα), обозначающее в дословном переводе целое, состоящее из соединенных частей. Однако понятие, скрывающееся под этим термином, гораздо многограннее.

    Хотя в современной жизни практически все вещи рассматриваются как нельзя дать единственно правильное определение этому понятию. Как ни странно, происходит это из-за проникновения теории систем буквально во все

    Еще в начале двадцатого века велись дискуссии о различии свойств линейных систем, исследуемых в математике, логике, от особенностей живых организмов (примером научной обоснованности в данном случае является теория функциональных систем П. К. Анохина). На современном этапе принято выделять ряд значений этого термина, которые образуются в зависимости от анализируемого объекта.

    В двадцать первом веке появилось более подробное объяснение греческого термина, а именно: «целостность, состоящая из элементов, которые связаны между собой и находятся в определенных отношениях». Но это общее описание значения слова не отражает свойств системы, анализируемой наблюдателем. В связи с этим понятие будет приобретать новые грани толкования в зависимости от рассматриваемого объекта. Неизменными останутся лишь понятия целостности, основных свойств системы и ее элементов.

    Элемент как часть целостности

    В теории систем принято рассматривать целое как взаимодействие и отношения определенных элементов, которые, в свою очередь, являются единицами с определенными свойствами, не подлежащими дальнейшему членению. Параметры рассматриваемой части (или свойства элемента системы), как правило, описываются при помощи:

    • функций (выполняемые рассматриваемой единицей действия в рамках системы);
    • поведения (взаимодействие с внешней и внутренней средой);
    • состояния (условие нахождения элемента с измененными параметрами);
    • процесса (смена состояний элемента).

    Стоит обратить внимание на то, что элемент системы не равнозначен понятию «элементарность». Все зависит от масштабов и сложности рассматриваемого объекта.

    Если обсуждать систему свойств человека, то элементами будут выступать такие понятия, как сознание, эмоции, способности, поведение, личность, которые, в свою очередь, сами могут быть представлены как целостность, состоящая из элементов. Из этого следует вывод, что элемент может рассматриваться как субсистема рассматриваемого объекта. Начальным этапом в системном анализе и является определение состава «целостности», то есть уточнение всех входящих в нее элементов.

    Связи и ресурсы как системообразующие свойства

    Любые системы не находятся в изолированном состоянии, они постоянно взаимодействуют с окружающей средой. Для того чтобы вычленить какую-либо «целостность», следует выявить все связи, объединяющие элементы в систему.

    Что такое связи и как они влияют на свойства системы.

    Связь - взаимная зависимость элементов на физическом или смысловом уровне. По значимости можно выделить следующие связи:

    1. Строения (или структурные): характеризуют в основном физическую составляющую системы (например, благодаря меняющимся связям углерод может выступать как графит, как алмаз или как газ).
    2. Функционирования: гарантируют работоспособность системы, ее жизнедеятельность.
    3. Наследования: случаи, когда элемент «А» является источником для существования «В».
    4. Развития (конструкционные и деструкционные): имеют место либо в процессе усложнения структуры системы, либо наоборот - упрощения или распада.
    5. Организационные: к ним можно отнести социальные, корпоративные, ролевые. Но наиболее интересной группой являются связи управления как позволяющие контролировать и направлять развитие системы в определенное русло.

    Наличие тех или иных связей обусловливает свойства системы, отображает зависимости между конкретными элементами. Так же можно проследить использование ресурсов, необходимых для построения и функционирования системы.

    Каждый элемент изначально снабжен определенными ресурсами, которые он может передавать иным участникам процесса или обменивать их. Причем обмен может происходить как внутри системы, так и между системой и внешней средой. Классифицировать ресурсы можно следующим образом:

    1. Материальные - представляют собой объекты материального мира: склады, товары, устройства, станки и т. д.
    2. Энергия - сюда включаются все виды, известные на современном этапе развития науки: электрическая, ядерная, механическая и т. д.
    3. Информация.
    4. Человеческие - человек выступает не только как работник, выполняющий некоторые операции, но и как источник интеллектуальных фондов.
    5. Пространство.
    6. Время.
    7. Организационные - в данном случае структура рассматривается как ресурс, недостаток которого может привести даже к распаду системы.
    8. Финансовые - для большинства организационных структур являются основополагающими.

    Уровни систематизации в теории систем

    Поскольку системы обладают определенными свойствами и признаками, их можно подвергнуть классификации, целью которой является выбор соответствующих подходов и средств описания целостности.

    Основные критерии типизации систем

    Существует категоризация относительно взаимодействия с внешней средой, структуры и пространственно-временных характеристик. Оценку функциональности систем можно производить по следующим критериям (см. таблицу).

    Критерии

    Взаимодействие с внешней средой

    Открытые - взаимодействующие с внешней средой

    Закрытые - проявляющие резистентность по отношению к воздействию внешней среды

    Комбинированные - содержат оба вида подсистем

    Структура целостности

    Простые - включающие небольшое количество элементов и связей

    Сложные - характеризуются неоднородностью связей, множественностью элементов и разнообразием структур

    Большие - отличаются множественностью и разнородностью структур и подсистем

    Выполняемые функции

    Специализированные - узкая специализация

    Многофункциональные - структуры, выполняющие несколько функций одновременно

    Универсальные (например, комбайн)

    Развитие системы

    Стабильные - структура и функции неизменны

    Развивающиеся - имеют высокую сложность, подвергаются структурным и функциональным изменениям

    Организованность системы

    Хорошо организованные (можно обратить внимание на свойства информационных систем, для которых характерны четкая организация и ранжированность)

    Плохо организованные

    Сложность поведения системы

    Автоматические - запрограммированный ответ на внешнее воздействие с последующим возвращением к гомеостазу

    Решающие - основаны на постоянных реакциях на внешние раздражители

    Самоорганизующиеся - гибкие реакции на внешние раздражители

    Предвидящие - превосходят внешнюю среду по сложности организации, способна предвидеть дальнейшие взаимодействия

    Превращающиеся - сложные структуры, не связанные с вещественным миром

    Характер связи между элементами

    Детерминированные - состояние системы может быть предсказано для любого момента

    Стохастические - их изменение носит случайный характер

    Структура управления

    Централизованные

    Децентрализованные

    Назначение системы

    Управляющие - свойства системы управления сводятся к регулированию информационных и иных процессов

    Производящие - характеризуются получением продуктов или услуг

    Обслуживающие - поддержка работоспособности систем

    Группы свойств системы

    Свойством принято называть некоторые характерные признаки и качества элемента или целостности, которые проявляются при взаимодействии с иными объектами. Можно выделить группы свойств, характерные практически для всех существующих общностей. Всего известно двенадцать общих свойств систем, которые разделены на три группы. Информацию смотрите в таблице.

    Группа статических свойств

    Из названия группы вытекает, что система обладает некоторыми особенностями, которые присущи ей всегда: в любой определенный промежуток времени. То есть это те характеристики, без обладания которыми общность перестает быть таковой.

    Целостность - это свойство системы, которое позволяет выделить ее из окружающей среды, определить границы и отличительные черты. Благодаря ему возможно существование устоявшихся связей между элементами в каждый выделенный момент времени, которые позволяют реализовать цели системы.

    Открытость - одно из свойств системы, основанное на законе взаимосвязи всего существующего в мире. Суть его в том, что можно найти связи между любыми двумя системами (как входящие, так и выходящие). Как можно заметить, при детальном рассмотрении эти взаимодействия различны (или несимметричны). Открытость свидетельствует о том, что система не существует изолированно от среды и производит обмен ресурсами с ней. Описание этого свойства обычно называют «моделью черного ящика» (со входом, который обозначает влияние среды на целостность, и выходом - влиянием системы на среду).

    Внутренняя неоднородность систем. В качестве наглядного примера подойдет рассмотрение свойств нервной системы человека, устойчивость которой обеспечивается многоуровневой, разнородной организацией элементов. Принято рассматривать три основные группы: свойства мозга, отдельных структур нервной системы и конкретных нейронов. Информация о составных частях (или элементах) системы позволяет составить карту иерархических связей между ними. Следует обратить внимание, что в данном случае рассматривается «различимость» частей, а не их «разделимость».

    Трудности определения состава системы заключаются в целях исследования. Ведь один и тот же объект можно рассмотреть с точки зрения его ценности, функциональности, сложности внутреннего устройства и т. д. Вдобавок ко всему, большую роль играет умение наблюдателя находить различия элементов системы. Поэтому модель стиральной машины у продавца, технического работника, грузчика, ученого будет абсолютно иной, поскольку перечисленные люди рассматривают ее с разных позиций и с разными установленными целями.

    Структурированность - свойство, описывающее взаимосвязи и взаимодействия элементов внутри системы. Связи и отношения элементов составляют модель рассматриваемой системы. Благодаря структурированности поддерживается такое свойство объекта (системы), как целостность.

    Группа динамических свойств

    Если статические свойства - это то, что можно наблюдать в любой отдельно взятый момент времени, то динамические относятся к разряду подвижных, то есть проявляющихся во времени. Это изменения состояния системы на протяженности определенного отрезка времени. Наглядным примером может служить смена времен года на каком-либо наблюдаемом участке или улице (статические свойства остаются, но видны воздействия динамических). Какие свойства системы относятся к рассматриваемой группе?

    Функциональность - определяется воздействием системы на среду. Характерной особенностью является субъективность исследователя в выделении функций, продиктованная поставленными целями. Так, автомобиль, как известно, является «средством передвижения» - это его основная функция для потребителя. Однако покупатель при выборе может руководствоваться и такими критериями, как надежность, комфортность, престижность, дизайн, а также наличие сопутствующих документов и т. д. В данном случае раскрывается многофункциональность такой системы, как машина, и субъективность приоритетов функциональности (поскольку будущий водитель выстроил свою систему главных, второстепенных и незначительных функций).

    Стимулируемость - проявляется повсеместно как адаптирование к внешним условиям. Ярким примером являются свойства нервной системы. Воздействие внешнего раздражителя или среды (стимула) на объект способствует изменению или коррекции поведения. Этот эффект подробно описал в своих исследованиях Павлов И. П., а в теории системного анализа он называется стимулируемостью.

    Изменчивость системы со временем. Если система функционирует, неизбежны изменения как во взаимодействии со средой, так и в осуществлении внутренних связей и отношений. Можно выделить следующие виды изменчивости:

    • скоростные (быстрые, медленные и т. д.);
    • структурные (изменение состава, структуры системы);
    • функциональные (замена одних элементов другими или изменение их параметров);
    • количественные (увеличение количества элементов структуры не изменяющие ее);
    • качественные (в этом случае изменяются свойства системы при наблюдаемом росте или упадке).

    Характер проявления перечисленных изменений может быть различен. Обязательным является условие учета данного свойства при анализе и планировании системы.

    Существование в изменяющейся среде. Как система, так и среда, в которой она находится, подвержены изменениям. Для функционирования целостности следует определиться с соотношением скорости изменений внутренних и внешних. Они могут совпадать, могут различаться (опережение или отставание). Важно правильно определить соотношение с учетом особенностей системы и окружающей среды. Наглядным примером может служить вождение автомобиля в экстремальных условиях: водитель действует либо на опережение, либо в соответствии с обстановкой.

    Группа синтетических свойств

    Описывает отношения системы и среды с точки зрения общего понимания целостности.

    Эмерджентность - слово английского происхождения, переводится как «возникать». Термином обозначают появление некоторых свойств, которые проявляются только в системе благодаря наличию связей определенных элементов. То есть речь идет о возникновении свойств, которые нельзя объяснить суммой свойств элементов. Например, детали автомобиля ездить и тем более осуществлять перевозки не в состоянии, но собранные в систему - способны быть средством передвижения.

    Неразделимость на части - это свойство, по логике вещей, вытекает из эмерджентности. Удаление какого-либо элемента из системы сказывается на ее свойствах, внутренних и внешних связях. В то же время элемент, «отправленный в свободное плавание», приобретает новые свойства и перестает быть «звеном цепи». Например, шина автомобиля на территории бывшего СССР частенько появляется на клумбах, спортивных площадках, «тарзанках». Но изъятая из системы автомобиля, она утеряла свои функции и стала совершенно иным объектом.

    Ингерентность - английский термин (Inherent), который переводится как «неотъемлемая часть чего-либо». От степени «включенности» элементов в систему зависит выполнение ею возложенных на нее функций. На примере свойств элементов в периодической системе Менделеева можно удостовериться в важности учета ингерентности. Так, период в таблице строится исходя из свойств элементов (химических), в первую очередь заряда ядра атома. Свойства вытекают из ее функций, а именно классификация и упорядочение элементов с целью предсказания (или нахождения) новых звеньев.

    Целесообразность - любая искусственная система создается с определенной целью, будь то решение какой-либо проблемы, развитие заданных свойств, выпуск требуемой продукции. Именно цель диктует выбор структуры, состава системы, а также связей и отношений между внутренними элементами и внешней средой.

    Заключение

    В статье изложены двенадцать системных свойств. Классификация систем, однако, гораздо разнообразнее и проводится в соответствии с целью, которую преследует исследователь. Каждая система обладает свойствами, которые отличают ее от множества других общностей. Кроме того, перечисленные свойства могут проявляться в большей или меньшей степени, что продиктовано внешними и внутренними факторами.

    Мы выделили, что для любой системы первичным является признак целостности, характеризующий полноту всех её частей. Целостность – наличие интегративных свойств, качеств, возникающих в результате взаимодействия элементов

    В психолого-педагогической литературе выделяется несколько подходов к определению признаков, характеризующих целостность систем. Мы рассмотрим основные признаки целостной системы, выделенные Гершунским

      Всякая система характеризуется наличием совокупности элементов , являющихся её структурной единицей. Причём имеется ограниченное число таких элементов, каждый из которых имеет предел делимости. Для сохранения целостности системы это важно, ибо бесконечное деление элементов приведёт к нарушению качественных характеристик системы.

    Состав элементов определяет природу системы. Элемент – минимальная системообразующая единица, имеющая предел делимости. Минимальное число – 2. Каждый элемент, в свою очередь, можно рассматривать как подсистему данной системы, представляющей собой некую целостность.

      Целостность системы характеризуется не механическим сложением элементов, а совокупностью взаимосвязанных и взаимодействующих элементов .

    Данная совокупность определяется упорядоченностью элементов. Если такая упорядоченность связана чёткой зависимостью элементов структура жёсткая . Имеет место в основном в механических системах. В социальных системах, где на конечный результат влияет множество, как внешних факторов, так и внутренних, имеет место некоторый беспорядок в отношении элементов.

    Специфику системы определяет (во многом) структура системы.

    СТРУКТУРА – это способ связи этих элементов. Может быть:

    - жестко упорядоченной : а) элементы связаны жёсткой зависимостью; б) не имеют выбора поведения; в) все функции твёрдо очерчены; г) исключена всякая автономия) - это механические системы;

    Может быть статической , если она отражает устойчивые связи;

    - динамической, отражающей связи, как функционирующего целого, так и развивающих.

    СОСТАВ – множество элементов подсистем, во многом определяет свойства и особенности системы, конечный результат её функционирования.

    СВЯЗЬ – это взаимодействие, при котором изменения одного компонента системы приводит к изменению других компонентов. При этом меняется и тот компонент, который вызвал это взаимодействие. Связи существуют между элементами и между элементом и всей системой. Это то, что соединяет элементы и свойства системы в целое. При помощи системообразующих связях отдельные элементы объединяются в систему.

    К системообразующим связям относятся все целевые связи, связи управления (субординации, дисциплинарные, режимные, инициативные), связи преемственности (между членами педагогического коллектива, между отдельными предметами в ходе их преподавания, связи преемственности в ходе методической работы, в развитии общеучебных умений и навыков, в деятельности учащихся и т.д.).

    В социальных системах – у элементов имеется:

    - возможность выбора путей и способов действия;

    - влияние многих факторов на формирование конечного результата;

    - определённая тенденция к беспорядку в отношениях элементов;

      Наличие у системы определённого уровня целостности .

    ЦЕЛОСТНОСТЬ – наличие у системы интегративных качеств, свойств, возникающих в результате взаимодействия её элементов, но отсутствующих у каждого элемента в отдельности.

    Уровень целостности определяется полнотой набора её элементов, согласованием всех функций элементов системы, ведущей ролью целого по отношению к элементам, наличием единой цели у всех элементов системы, единством реагирования всех составных частей системы на внешние и внутренние воздействия, наличием развитых обратных и системообразующих связей.

      Иерархичность. По мнению В.С.Садовского каждый компонент исследуемой системы может рассматриваться как система, а сама исследуемая система представляет собой один из компонентов системы более высокого порядка.

    Иерархичность характеризуется:

    Всякая система состоит из подсистем;

    Подсистемы эти взаимно подчинены друг другу;

    Подсистемы высшего уровня направляют деятельность подсистем низшего уровня;

    Подсистемы низшего уровня функционируют с уч1том команд, даваемых сверху

    Для иерархичности характерно:

    Разветвлённость системы координационных связей;

    Вертикальным соподчинением подсистем и элементов внутри системы;

    Правом вмешателства подсистем и элементов верхнего уровня в процессы подсистем низшего уровня;

    Зависимостью действий подсистем верхнего уровня от фактического исполнения подсистемами низшего уровня своих целей.

    Помимо координационных связей существуют субординационные.

      Наличие у рассматриваемого объекта субординационных связей между элементами, подчинённость элементов.

    Нужно иметь в виду, что элементы системы имеют неодинаковое значение. Есть такие, отсутствие которых выводит систему из строя, а отсутствие других ухудшает результативность системы.

    СУБОРДИНАЦИОННАЯ СВЯЗЬ – это связь, стороны которой зависят друг от друга, причём одна из них определяет существование остальных (Л.Н.Суворов).

    СУЩНОСТЬ СВЯЗЕЙ КООРДИНАЦИИ – синтез динамики целого из поведения отдельных элементов.

    Сущность связей субординации - воздействие целого, его динамика на поведение.

    Отношения субординации – это отношения распорядительство и администрирование, с одной стороны, и исполнительства подчиненности – с другой.

    В социальных системах, рассматривая их через призму субординации, можно выделить следующие свойства, проявляющие её качественную сторону

    - наличие в системе уровней управления;

    - существование официальных руководителей;

    - отношения между управляющим и управляемым строятся на основе субординации.

    Субординация может выражать как формальную структуру коллектива, когда вертикальные связи отражают различие должностей разных руководителей, так и неформальную, которая не предусматривается штатным расписанием.

      Наличие целеустремлённости в поведении системы. ЦЕЛЬ – (как отмечает В.С.Лазарев) – это образ желаемого результата, соотнесённого с возможностями, определённого во времени, операционально поставленного. Операциональность цели означает, что существует способ проверки достижения результата, без чего правление становится бессмысленным, ибо лишается главнейшего компонента – обратной связи и возможности вносить коррективы в выполнение конкретных шагов.

    Без цели система не может эффективно функционировать. Каждый элемент действует во имя одной цели, стоящей перед системой. Основные требования к построению дерева целей. (Ю.А.Конаржевский ).

        Дерево целей надо строить «сверху», определяя конечный результат функционирования системы через проектирование генеральной цели.

        Генеральные цели формулируются в форме абстрактных понятий. Процесс построения – от абстрактного к конкретному.

        Для достижения цели данного уровня обязательно выполнение подцелей нижнего уровня.

        Средствами к достижению цели являются подцели, которые….

        Цели верхнего и нижнего уровней должны быть логически связанными.

        Декомпозиция (расчленение целей) прекращается по достижению элементарного уровня.

        Элементарным (мероприятийным уровнем дерева целей следует считать такой п-ый уровень, когда на последующем п+1 уровне появляются альтернативные средства достижения п-го уровня).

    Главная цель – СОЗДАТЬ УСЛОВИЯ, ОБЕСПЕЧИВАЮЩИЕ РАЗНОСТОРОННЕЕ, СВОБОДНОЕ И ТВОРЧЕСКОЕ РАЗВИТИЕ ЛИЧНОСТИ БУДУЩЕГО ПЕДАГОГА.

    Возможна конкретизация (СОДЕЙСТВОВАТЬ, ОПРЕДЕЛИТЬ, ОБУЧИТЬ, ОСУЩЕСТВИТЬ, ОБЕСПЕЧИТЬ, СОЗДАТЬ, СТИМУЛИРОВАТЬ И Т.Д.)

    Цель трансформируется в задачу, если в формулировке указываются способы её достижения. (на основе…., за счёт…, для чего…, путём…, и т.д. (стр. 40-41 Технологии управленческой деятельности зам. дир. Школы.))

    Варианты формулировок задач:

      Создать дополнительно условия для развития творческого потенциала личности педагога и студента за счёт повышения вариативности содержания образования, внедрения технологий развивающего и модульного обучения, дифференциации и индивидуализации УВП.

      Разработать и приступить к реализации Программы развития….,

      Обеспечить рост качественного уровня подготовки студентов, достижения ими обязательного уровня по важнейшим приоритетным умениям в соответствии с требованиями стандартов на основе развития образования по выбору, дифференциации и индивидуализации обучения и воспитания.

      Заложить основы системы диагностики результативности деятельности студентов, распространить новые формы и методы.

      Упорядочить внеклассную деятельность студентов во взаимодействии с учебным процессом в условиях разноуровневого обучения и углубления межведомственного взаимодействия.

    Главные или генеральные цели диктуются обществом, частные цели, цели конкретного этапа – цели ОУ.

      Наличие коммуникативных свойств, проявляющиеся в двух формах: 1) во взаимодействии с внешней средой (среда – это совокупность всех условий, которые окружают вещь, растение, животные, человека и непосредственно или косвенно воздействуют на них; различают идеологическую, политическую, экономико-производственную, социально-бытовую, культурную., природно-экологическую среду);

    Любая социальная система – составная часть общественного организма будучи связана с другими системами. В мире нет системы, изолированной от внешней среды, которая воздействует на жизнедеятельность системы. Внешняя среда создаёт условия существованияи функционирования системы.

    2) во взаимодействии данной системы с суб- и суперсистемами , т.е. с системами более низкого или высокого порядка.

      Наличие управления. Это специфический признак, характерный для систем биологического и социального происхождения.

    ПЕДАГОГИКА даёт управлению понятие объекта. Всякое управление объектно ориентировано. Управление в образовании отличается от управления в здравоохранении, торговли и т.д.

    Объектом управления в образовании является конкретная ОБРАЗОВАТЕЛЬНАЯ СИСТЕМА.

    Наша задача рассмотреть:

      общее понятие систем,

      понятие образовательной системы,

      виды образовательных систем,

      Понятие управления,

      Принципы, методы, функции управления,

    Свойства, определяемые взаимодействием части и целого, включают:

      целостность;

      интегративность;

      коммуникативность;

      иерархичность.

    Свойство целостности предполагает, что:

      целое не является простой суммой частей, поскольку систему необходимо рассматривать как единство;

      целостная система – это такая система, в которой внутренние связи частей между собой являются преобладающими по отношению к движению этих частей и к внешнему воздействию на них;

      для того, чтобы что-либо целостное воспринималось как система, оно должно иметь границы, отделяющие его от внешней среды.

    Свойство целостности проявляется в возникновении у системы новых интегративных качеств, не свойственных ее компонентам, т.е. в эмерджентности . При этом объединенные в систему элементы могут терять ряд свойств, присущих им вне системы, т.е. система как бы подавляет некоторые свойства своих элементов.

    Например, система производства в рабочее время использует только те знания и умения рабочих (элементов системы), которые нужны для осуществления процесса производства и подавляет другие их способности (вокальные, хореографические).

    Свойство целостности связано с целью, для реализации которой создается система. При этом объекты (части) функционируют во времени как единое целое – каждый объект, подсистема, ячейка, работают ради единой цели, стоящей перед системой в целом.

    Двойственной по отношению к свойству целостности выступает свойство физической аддитивности (или независимости, или суммативности). Свойства физической аддитивности проявляются у системы, как бы распавшейся на независимые элементы. Строго говоря, любая система находится всегда между крайними состояниями абсолютной целостности и абсолютной аддитивности. При этом термином «прогрессирующая факторизация» называется стремление системы к возрастанию степени независимости элементов, а термином «прогрессирующая систематизация» - стремление системы к уменьшению самостоятельности элементов, т.е. к большей целостности.

    Свойство интегративности означает наличие системообразующих, системосохраняющих факторов, в числе которых важную роль играют неоднородность и противоречивость элементов, с одной стороны, и стремление их вступить в коалиции, с другой.

    Коммуникативность означает, что система не изолирована от других систем, она связана множеством коммуникаций со средой, которая, в свою очередь, является сложным и неоднородным образованием. Данная среда содержит:

      систему более высокого порядка, задающую требования и ограничения объекту;

      нижележащие системы;

      системы одного уровня с рассматриваемым объектом.

    Коммуникативность характеризует сложное единство системы со средой.

    Иерархичность является необходимым свойством систем и проявляется в существовании нескольких уровней взаимодействия:

      каждый уровень иерархической упорядоченности имеет сложные взаимоотношения в вышележащим и нижележащим уровнями. Если даже между элементами одного уровня иерархии нет явных связей между собой (горизонтальных связей), то они все равно проявляются через вышестоящий уровень. В частности, от вышестоящего уровня зависит, например, какое из подразделений будет поощрено, а какому поручат непрестижную работу. Эта конкретизация свойства иерархичности объясняет неоднородность использования в сложных организационных системах понятий «цель» и «средства», «система» и «подсистема».

      более высокий иерархический уровень оказывает направляющее воздействие на нижележащий уровень, подчиненный ему. Это воздействие проявляется в том, что подчиненные члены иерархии приобретают новые свойства, отсутствующие у них в изолированном состоянии, т.е. свойство эмерджентности проявляется на каждом уровне иерархии;

      для систем с неопределенностью иерархичность означает как бы расчленение «большой» неопределенности на более «мелкие», лучше поддающиеся исследованию и оценке. При этом даже если эти мелкие неопределенности не удается полностью раскрыть и объяснить, то все же иерархическое упорядочение частично снимает общую неопределенность, обеспечивает по крайней мере управляемый контроль над принятием решения.

    К другим свойствам систем относятся:

      историчность , основанная на том, что время является непременной характеристикой системы, что выражается в оценке жизненного цикла продукта, технологии, предприятия и т.д.;

      самоорганизация , т.е. способность системы противостоять энтропийным тенденциям, адаптироваться к внешним возмущениям, изменяя при необходимости свою структуру. Информация теряется различными способами, что ведет к увеличению энтропии системы, но чтобы приобрести новую информацию и уменьшить энтропию, следует произвести новые измерения, т.е. затратить энергию. Энтропия и информация служат, таким образом, выражением двух противоположных тенденций в процессах развития. Если система эволюционизирует в направлении упорядоченности, то ее энтропия уменьшается, но это требует целенаправленных усилий, внесения информации, т.е. управления;

      гомеостаз - означает свойство системы поддерживать свои параметры и функции в определенном диапазоне. Оно основано на устойчивости внутренней среды объекта по отношению к воздействию внешней среды. То есть в гомеостате управляемая переменная поддерживается на требуемом уровне механизмом саморегулирования. Здесь орган управления встроен непосредственно в систему, являясь неотъемлемой частью ее. Это идеальное сочетание, свойственное естественным, в первую очередь биологическим, системам, к которому стремятся системы, создаваемые человеком.

      эквифинальность ,характеризующая предельные возможности систем. Сложность структуры системы определяет сложность ее поведения, что в свою очередь означает предельность надежности, помехоустойчивости, управляемости и других качеств системы, т.е. предельность жизнеспособности и потенциальной эффективности сложных систем, в данном случае систем управления и их организационных структур.

    Другой механизм в этой системе - оценка фотографий. Он особенно важен для девушек. Они отбирают свои лучшие фотографии, критически их отсеивают и постоянно обновляют. Почему? Потому что им ставят оценки - совершенно незнакомые люди.

    Многие полагают, что для них неважно мнение других людей, и тем более незнакомых. На самом деле это самообман. Человек - социальное существо, и для него всегда важно мнение любых других людей:

    Одноклассница выкладывает фотографии на сайт, потому что одноклассники на пятой воде ставят ей оценки

    Итак, на «Одноклассниках» одновременно работают три разных формулы, дополняющие друг друга. Формула ностальгии - для первоначального интереса и привлечения аудитории. Оценки фотографий - для самоутверждения женской половины. Мужской интерес - для оценок фотографий женской половины.

    Главная формула Ютуба - досуг. Но на входе его воронки работает подсистема вирусного распространения видеороликов:

    Пользователи делятся видеороликами с друзьями, потому что хвастаются удачной добычей

    А на выходе - подсистема удержания внимания - рекомендации:

    Внимание пользователя притягивается к рекомендованным видеороликам,
    поэтому он остаётся посмотреть ещё и ещё

    На страницах фильмов и концертов сайта « Яндекс-афиша » была зелёная кнопка «Присоединиться»:


    Когда пользователи на неё нажимали, число рядом с ней увеличивалось и показывало, сколько людей хотят посмотреть этот фильм или концерт. Полезное действие в том, чтобы Яндекс мог узнать, насколько популярно то или иное событие.

    В чём проблема? На эту красивую блестящую кнопочку нажимало очень мало людей. Когда она только появилась, это число на самых популярных хитах измерялось единицами: два, три, десять человек. «Фильм „Годзилла“ - идут три человека». Потом картина несколько улучшилась. Но стоит иметь в виду, что показано количество всех людей, которые собирались на этот фильм во всех кинотеатрах в течение всего времени, что фильм в прокате. Для Москвы это ничтожное число.

    Кнопке недостаточно красивого карамельного вида, чтобы на неё нажимали. Должна появиться сила, которая будет заставлять людей на неё нажимать.

    Другой пример - сайт «Ласт.фм». На этом музыкальном сервисе тусуются любители музыки. На этом сайте есть страница концерта, в данном случае - Мэрилина Мэнсона 13 ноября 2009 года в Москве в клубе Б-2:


    На странице тоже есть блок, в котором написано, что на концерт идут 208 человек. Это число сопоставимо с числом, что мы видели на Яндексе, но это концерт, который идёт один раз в конкретном месте. Значит, система работает гораздо более эффективно.

    Секрет в том, что у каждого пользователя Ласт.фм на сайте есть профиль:


    Мы видим страничку пользователя, на которой отображается список концертов, на которые он ходил. Люди общаются на сайте, и этот профиль является для них неким мерилом их статуса. Можно козырнуть в споре: «Я был на тридцати концертах, что вы мне лапшу на уши вешаете». Страсть к собирательству и тщеславие заставляют людей культивировать свой профиль.

    Таким образом, две разные подсистемы - страницы концерта и профиля пользователя связаны в надсистеме. Авторы сайта организовали «сквозной проход тщеславия».

      В сфере услуг

      «Представьте, что вы работаете менеджером по продажам. Клиент звонит вам (потому что знает вас), чтобы рассказать о неприятной ошибке на вашем сайте. Естественно, вы перенаправляете проблему в отдел ИТ . Но как вы узнаете, решена ли проблема? Позаботился ли айтишник о клиенте? Вы узнаете, переспросив. Клиенты хотят, чтобы вы, их изначальный союзник, следили за решением таких вопросов, а не „ кто-то там из ИТ “, даже если вы по определению знаете, что айтишники лучше справятся».

      Леонардо Ингильери, Мика Соломон. Исключителный сервис, исключительная прибыль . 2010

    Интернет-магазин «Амазон» одним из первых решил продавать огромное количество товаров через интернет. Если у вас пятьдесят тысяч товаров, нужно понять, как дать человеку к ним доступ.

      Вместо того, чтобы вываливать на пользователей тяжеловесное меню с классификатором товаров, «Амазон» построил сайт вокруг рекомендаций. Идея в том, чтобы на первый план вышел товар, который, вероятно, более интересен клиенту. (Тяжеловесное меню тоже имеется, но оно вываливается лишь при наведении мыши).

      Идеальное решение должно залезть в мозг к человеку. Как же это сделать? «Амазон» нашёл гениальное решение - использовать самого человека.

      Когда пользователь приходит в первый раз, он видит главную страницу и самые популярные товары. Если он заинтересовался продуктом на витрине, попадает на подробную страницу товара.

      Ему тут же предлагают похожие товары. Раз ему интересна эта книга, значит, будут интересны и другие, близкие по каким-то параметрам - например, по статистике покупок других пользователей.

      Переход на страницу товара тут же записывается. «Амазон» ещё не знает, как этого человека зовут и какая у него электронная почта, но на него уже есть досье. Всё что он делает, клики, история запросов и дальнейшие покупки запоминаются в базу данных. С помощью технологии «куки» в браузер кладётся числовой идентификатор, по которому человек, пользующийся конкретным компьютером, связывается со своим досье.

      Благодаря тому, что «Амазон» накапливает информацию о реальных действиях и интересах человека, рекомендации становятся всё более и более точными.

    В «Амазоне» организован сквозной проход энергии и информации - пользователь елозит мышкой, греет стол, кликает по сайту, сам генерирует информацию о собственной истории посещений, запросов и покупок, и в итоге сам направляет на себя нужные товары.

    В компаниях Элона Маска источником энергии выступает солнце, и полученная энергия буквально сквозь них проходит. Энергетическая сеть Соларсити питается от солнечного света. Компания разрабатывает, устанавливает и даёт в лизинг домашние и коммерческие системы преобразования солнечной энергии и накопления электроэнергии, то есть поставляет электроэнергию в частные дома и на станции бесплатной зарядки автомобилей другой его компании - Тесла.

    Интерфейс - зло

    С точки зрения теории систем любой интерфейс - узкое место с низким КПД , в котором теряется энергия, скорость, пропускная способность, время, аудитория и деньги. Самый неэффективный вид интерфейса - пользовательский. В отличие от аппаратных и программных, пользовательский интерфейс открывает безграничный простор для человеческих решений и ошибок.

    Другой пример - обязательная регистрация в интернет-магазине. Покупатель вынужден придумать логин и пароль, а потом подтвердить почтовый адрес, как бы оправдываясь перед системой. Эти бессмысленные для пользователя действия оттягивают момент покупки, отсеивая неопытных покупателей и уменьшая оборот магазина.

    Работоспособный магазин продаёт товар без искусственных преград:


    Регистрация объединена с покупкой, как бы замаскирована там.

    После регистрации в Апсторе все приложения покупаются в один-два клика:


    Вся информация о пользователе и его банковской карточке хранится в системе, поэтому ему не нужно лезть за кошельком. Деньги списываются автоматически:


    На первый взгляд кажется, что это невозможно - продать что-то человеку без его желания. Но мобильные операторы не дают в руки абонентов кнопку «купить СМС » или «купить минуты разговора». Если абонент не принимает всякий раз решение о покупке, ему проще тратить деньги с собственного счёта. Покупка есть, интерфейса нет.

    Единственная задача подсистемы интерфейса - обеспечить проход информации между другими подсистемами. Идеально, если информация пройдёт напрямую.

    Запуск и развитие

    В бюро работают над продуктами итерационно по принципу «ФФФ» . Аббревиатура ФФФ означает fix time, fix budget, flex scope. Мы работаем с фиксированными сроками и бюджетом, а функциональность оставляем гибкой.

    Если приближается дедлайн, приходится отказываться от отдельных функций или даже целых подсистем. Особенно важны эти решения при первом запуске продукта. Критический контур определяет, от каких функций можно временно отказаться, а без каких продукт не заработает вовсе.

    Но продукт необязательно запускать целиком. Представление о критическом контуре помогает спланировать постепенный запуск автономных подсистем, входящих в критический контур будущего продукта.

      В авиации

      Пионер авиации Отто Лилиенталь продвигал концепцию «подпрыгнуть прежде, чем полететь», которая заключалась в том, что изобретатели должны начать с планеров и суметь их поднять в воздух, вместо того, чтобы просто разрабатывать машину с двигателем на бумаге и надеяться, что она будет работать.

    Это дизайн более высокого уровня - система проектируется не на одном «чертеже», а на многоэкранной схеме - во времени. Каждый «экран» представляет собой работоспособное состояние системы на выбранном этапе развития.

    Ниже представлена упрощённая многоэкранная схема развития экосистемы Эпла в течение последних пятнадцати лет. Для упрощения картины я исключил планшеты, часы и будущие телевизоры - логика их появления и взаимодействия с другими подсистемами мало чем отличается от генеральной линии.